IGP-LAB-EIGRP负载均衡(详解)

 

EIGRP负载均衡
 
EIGRP负载均衡
1.实验目的
通过本实验可以掌握:
1)EIGRP等价负载均衡的实现方法
2)EIGRP非等价负载均衡的实现方法
3)EIGRP等价负载均衡的实现方法
4)EIGRP非等价负载均衡的实现方法
 
 

 
 
R0:
 
R0(config)#int e1/0
R0(config-if)#ip add 14.1.1.2 255.255.255.0
R0(config-if)#no sh
R0(config-if)#int lo0
R0(config-if)#ip add 1.1.1.1 255.255.255.0
R0(config-if)#no sh
R0(config-if)#int s0/0
R0(config-if)#ip add 13.1.1.2 255.255.255.0
R0(config-if)#clo r 64000
R0(config-if)#no sh
R0(config-if)#exit
R0(config)#router eig 110
R0(config-router)#no auto-summary
R0(config-router)#network 1.1.1.0 0.0.0.255
R0(config-router)#network 13.1.1.0 0.0.0.255
R0(config-router)#network 14.1.1.0 0.0.0.255
 
 
R1:
 
R1(config)#int e1/0
R1(config-if)#ip add 14.1.1.1 255.255.255.0
R1(config-if)#no sh
R1(config-if)#int s0/1
R1(config-if)#ip add 12.1.1.1 255.255.255.0
R1(config-if)#clo r 64000
R1(config-if)#no sh
R1(config-if)#int lo0
R1(config-if)#ip add 2.2.2.2 255.255.255.0
R1(config-if)#no sh
R0(config-if)#exit
R1(config)#router eig 110
R1(config-router)#no auto-summary
R1(config-router)#network 12.1.1.0 0.0.0.255
R1(config-router)#network 2.2.2.0 0.0.0.255
R1(config-router)#network 14.1.1.0 0.0.0.255
 
 
R2:
 
R2(config)#int s0/2
R2(config-if)#ip add 12.1.1.2 255.255.255.0
R2(config-if)#clo r 64000
R2(config-if)#no sh
R2(config-if)#int lo0
R2(config-if)#ip add 3.3.3.3 255.255.255.0
R2(config-if)#no sh
R2(config-if)#int s0/1
R2(config-if)#ip add 13.1.1.1 255.255.255.0
R2(config-if)#clo r 64000
R2(config-if)#no sh
R0(config-if)#exit
R2(config)#router eig 110
R2(config-router)#no auto-summary
R2(config-router)#network 12.1.1.0 0.0.0.255
R2(config-router)#network 3.3.3.0 0.0.0.255
R2(config-router)#network 13.1.1.0 0.0.0.255
 
 
实验调试:
在R0上,关注 12.1.1.0/24网络,虽然路由器R0到达12.1.1.0/24网络有两条路径,但是路由器会将 FD最小的放入路由表,选择走g0/0接口。那么另外一条路径是不是可行后继路由呢?在路由器R0上查看拓扑表如下:
R0#sh ip eigrp topology
IP-EIGRP Topology Table for AS(110)/ID(1.1.1.1)
 
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status
 
P 1.1.1.0/24, 1 successors, FD is 128256
        via Connected, Loopback0
P 2.2.2.0/24, 1 successors, FD is 409600
        via 14.1.1.1 (409600/128256), Ethernet1/0
P 3.3.3.0/24, 1 successors, FD is 2297856
        via 13.1.1.1 (2297856/128256), Serial0/0
P 12.1.1.0/24, 1 successors, FD is 2195456
        via 14.1.1.1 (2195456/2169856), Ethernet1/0
        via 13.1.1.1 (2681856/2169856), Serial0/0  
P 13.1.1.0/24, 1 successors, FD is 2169856
        via Connected, Serial0/0
P 14.1.1.0/24, 1 successors, FD is 281600
        via Connected, Ethernet1/0
从上面的输出中可以看到,第二条路径(走s0/0接口)的AD为2169856,而(successors)最优路由(走e1/0接口)的FD为2195456,AD<FD,满足可行性条件,所以第二条路径(走s0/0 接口)是最优路由(走e1/0接口)的可行后继。
当最优路径down后,会启动备份路由。如果没有备份路由,路由器就以组播的方式向它的邻居发送一个查询包,以询问它们是否有一条到目的地的后继路由。   
 
 
R1#sh ip eigrp topology
IP-EIGRP Topology Table for AS(110)/ID(2.2.2.2)
 
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status
 
P 1.1.1.0/24, 1 successors, FD is 409600
        via 14.1.1.2 (409600/128256), Ethernet1/0
P 2.2.2.0/24, 1 successors, FD is 128256
        via Connected, Loopback0
P 3.3.3.0/24, 1 successors, FD is 2297856
        via 12.1.1.2 (2297856/128256), Serial0/1
P 12.1.1.0/24, 1 successors, FD is 2169856
        via Connected, Serial0/1
P 13.1.1.0/24, 1 successors, FD is 2195456
        via 14.1.1.2 (2195456/2169856), Ethernet1/0
        via 12.1.1.2 (2681856/2169856), Serial0/1
P 14.1.1.0/24, 1 successors, FD is 281600
        via Connected, Ethernet1/0
同理:在R1 上也存在successor( 最优路径) 和feasible successor (次优路径)。
 
 
 
 
再看看R2 上:
R2#sh ip eigrp to
IP-EIGRP Topology Table for AS(110)/ID(3.3.3.3)
 
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status
 
P 1.1.1.0/24, 1 successors, FD is 2297856
        via 13.1.1.2 (2297856/128256), Serial0/1
        via 12.1.1.1 (2323456/409600), Serial0/2
P 2.2.2.0/24, 1 successors, FD is 2297856
        via 12.1.1.1 (2297856/128256), Serial0/2
        via 13.1.1.2 (2323456/409600), Serial0/1
P 3.3.3.0/24, 1 successors, FD is 128256
        via Connected, Loopback0
P 12.1.1.0/24, 1 successors, FD is 2169856
        via Connected, Serial0/2
P 13.1.1.0/24, 1 successors, FD is 2169856
        via Connected, Serial0/1
P 14.1.1.0/24, 2 successors, FD is 2195456
        via 12.1.1.1 (2195456/281600), Serial0/2
        via 13.1.1.2 (2195456/281600), Serial0/1
等价负载均衡(metric相等):
上面输出可以看出,到14.1.1.0/24网络存在两条successor,那么这两条路由都会放入路由表,
 
思考:等价负载均衡换成非等价负载均衡要怎么做呢。
1.       不等价负载均衡: 必要条件 feasible successor:fs的AD<successor的FD (默认支持4条。
在路由模式下,maximum-path,能后variance
2.FS的FD<=Variance值*successor的FDFS的metric <= 最优路由的metric × variance), 就可以成为非等价负载均衡路径(不等价负载均衡前提条件:successor和feasible successor之间)。
操作如下:
1. 把via 13.1.1.2 (2195456/281600), Serial0/1 这条路径改成feasible successor
 
AD=281600< successors  FD = 2195456
条件成立
2.       feasible successor FD> successors FD 
FD metric计算公式:
 

 
 
BW :路由路径中的最小带宽(单位k ),DIY :路由路径的各延迟之和(单位微妙usec )。
例如:via 13.1.1.2 (2195456/281600), Serial0/1
(路由流向的入接口延迟之和,以及带宽的最小值。)
BW
A.       R0 的e1/0 接口:
   R0#sh int e1/0
Ethernet1/0 is up, line protocol is up
 Hardware is AmdP2, address is cc00.1644.0010 (bia cc00.1644.0010)
 Internet address is 14.1.1.2/24
 MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,
 
B . R2 的S0/1 接口
    R2#sh int s0/1
Serial0/1 is up, line protocol is up
 Hardware is M4T
 Internet address is 13.1.1.1/24
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 
BW 最小值是1544.
延迟之和是1000 加20000 等于21000
带入上面公式计算:
10^7 除以1544 等于6476.683937823834   (注意这里就取整数) 6476
延迟之和除以10 就是2100
 
6476 加2100 等于8576
 
8576 乘以256 等于2195456
所以,这样我们可以改延迟和改大点,以达到(feasible successor FD> successors FD )目的。
操作如下:
R0(config)#int e1/0
R0(config-if)#delay 1500
R0(config-if)#end
R0#sh int e1/0
Ethernet1/0 is up, line protocol is up
 Hardware is AmdP2, address is cc00.1644.0010 (bia cc00.1644.0010)
 Internet address is 14.1.1.2/24
 MTU 1500 bytes, BW 10000 Kbit, DLY 15000 usec
 
 
调试结果:
查看拓扑表信息:
R2#sh ip eigrp to
IP-EIGRP Topology Table for AS(110)/ID(3.3.3.3)
 
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status
 
P 1.1.1.0/24, 1 successors, FD is 2297856
        via 13.1.1.2 (2297856/128256), Serial0/1
        via 12.1.1.1 (2323456/409600), Serial0/2
P 2.2.2.0/24, 1 successors, FD is 2297856
        via 12.1.1.1 (2297856/128256), Serial0/2
        via 13.1.1.2 (2681856/768000), Serial0/1
P 3.3.3.0/24, 1 successors, FD is 128256
        via Connected, Loopback0
P 12.1.1.0/24, 1 successors, FD is 2169856
        via Connected, Serial0/2
P 13.1.1.0/24, 1 successors, FD is 2169856
        via Connected, Serial0/1
P 14.1.1.0/24, 1 successors, FD is 2195456
        via 12.1.1.1 (2195456/281600), Serial0/2
        via 13.1.1.2 (2553856/640000), Serial0/1
 
从上面输出可以明显看出:FS的metric <= 最优路由的metric × variance(variance=2)
是成立的。接下来配置如下:
查看R2 路由表:R2#sh ip ro
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
 
Gateway of last resort is not set
 
     1.0.0.0/24 is subnetted, 1 subnets
D       1.1.1.0 [90/2297856] via 13.1.1.2, 00:27:19, Serial0/1
     2.0.0.0/24 is subnetted, 1 subnets
D       2.2.2.0 [90/2297856] via 12.1.1.1, 00:07:28, Serial0/2
     3.0.0.0/24 is subnetted, 1 subnets
C       3.3.3.0 is directly connected, Loopback0
     12.0.0.0/24 is subnetted, 1 subnets
C       12.1.1.0 is directly connected, Serial0/2
     13.0.0.0/24 is subnetted, 1 subnets
C       13.1.1.0 is directly connected, Serial0/1
     14.0.0.0/24 is subnetted, 1 subnets
D       14.1.1.0 [90/2195456] via 12.1.1.1, 00:07:38, Serial0/2
//最优路径放入路由表。
 
 
配置后,查看R2路由表:
R2(config)#router eig 110
R2(config-router)#variance 2
 
R2#sh ip ro
*Mar 1 00:28:20.763: %SYS-5-CONFIG_I: Configured from console by console
R2#sh ip ro
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
 
Gateway of last resort is not set
 
     1.0.0.0/24 is subnetted, 1 subnets
D       1.1.1.0 [90/2297856] via 13.1.1.2, 00:00:03, Serial0/1
                [90/2323456] via 12.1.1.1, 00:00:03, Serial0/2
     2.0.0.0/24 is subnetted, 1 subnets
D       2.2.2.0 [90/2681856] via 13.1.1.2, 00:00:03, Serial0/1
                [90/2297856] via 12.1.1.1, 00:00:03, Serial0/2
     3.0.0.0/24 is subnetted, 1 subnets
C       3.3.3.0 is directly connected, Loopback0
     12.0.0.0/24 is subnetted, 1 subnets
C       12.1.1.0 is directly connected, Serial0/2
     13.0.0.0/24 is subnetted, 1 subnets
C       13.1.1.0 is directly connected, Serial0/1
     14.0.0.0/24 is subnetted, 1 subnets
D       14.1.1.0 [90/2553856] via 13.1.1.2, 00:00:04, Serial0/1
                 [90/2195456] via 12.1.1.1, 00:00:04, Serial0/2
//实现了不等价负载均衡
 

本文出自 “谢枫” 博客,转载请与作者联系!

你可能感兴趣的:(1,实验目的)