- ifconfig工具源码分析
weixin_34357887
操作系统数据结构与算法
ifconfig是linux中用于显示或配置网络设备(网络接口卡)的命令,英文全称是networkinterfacesconfiguring。同netstat一样,ifconfig源码也位于net-tools中。源码位于net-tools工具包中,这是linux网络的基本工具包,此外还有arp,hostname,route等命令。项目链接:http://net-tools.sourceforge.
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- LSNet: 基于侧向抑制的神经网络
碳酸的唐
模型养成与叙述有意思的py库神经网络人工智能深度学习
引言在计算机视觉领域,我们一直在寻找灵感来源以提高图像处理和识别的效果。而人类视觉系统作为经过数百万年进化的精密系统,无疑是最好的参考对象之一。今天,我要向大家介绍一个名为LSNet(LateralSuppressionNetwork,侧向抑制网络)的技术,它模拟了人类视觉系统中的侧向抑制机制,为计算机视觉任务带来了新的可能性。什么是侧向抑制?侧向抑制(LateralSuppression),也被
- 卷积神经网络
亿只小灿灿
Python算法与数据结构人工智能cnn人工智能神经网络
一、引言在当今人工智能的浪潮中,卷积神经网络(ConvolutionalNeuralNetwork,CNN)无疑是一颗璀璨的明星。它在图像识别、语音处理、自然语言处理等众多领域取得了巨大的成功,极大地推动了人工智能技术的发展。那么,什么是卷积神经网络?它的算法原理是什么?本文将深入探讨这些问题,并通过Python代码实现一个简单的卷积神经网络,以帮助读者更好地理解和掌握这一强大的技术。二、卷积神经
- docker-compose部署nacos
青春不流名
docker容器运维
1、docker-compose内容高版本的nacos使用docker启动,需要将所有的端口放开,仅仅开放8848端口,spring-boot客户端获取nacos配置的时候,可能取到的内容为空。version:'3'#定义自定义网络,确保服务间通信和外部访问networks:seata-network:driver:bridgeservices:mysql:image:mysql:8.0.33co
- AttributeError: module ‘distutils‘ has no attribute ‘version‘
一只小狐狸坐在沙丘上
深度学习人工智能
问题描述run(unidexgrasp)tianyu@tianyu:~/UniDexGrasp/dexgrasp_generation$python./network/train.py--config-nameipdf_config--exp-dir./ipdf_trainError:Traceback(mostrecentcalllast):File"./network/train.py",li
- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- gem5-gpu教程 DSENT (Design Space Exploration of Networks Tool) 配合gem5
事橙1999
gem5-gpu硬件架构
概述DSENT是一种建模工具,旨在快速探索电子和新兴的片上光电网络(NoC)的设计空间。它为各种网络组件提供分析和参数化模型,并可在一系列技术假设下移植。给定架构级参数,DSENT从电气和光学构建块分层构建指定的模型,并输出详细的功率和面积估计。版本当前:0.91(2012年6月26日)最新版本或其他信息可在以下网址找到https://sites.google.com/site/mitdsent系
- 【Linux】nmcli设置bond
在成都搬砖的鸭鸭
Linuxlinux运维
目录1、介绍2、配置步骤【1】创建bond连接【2】添加从属接口【3】激活bond口1、介绍nmcli是NetworkManager提供的网络管理工具,nmcli设置的bond可以持久化,因为会写入配置文件,下面我们就来通过nmcli来配置bond聚合口。2、配置步骤【1】创建bond连接[root@xxx~]#nmcliconnaddtypebondcon-namebond0ifnamebond
- DeLorean联手Sui网络推出最新区块链订车,XBIT平台xaut今日价格行情飙升引热议
caijingshiye
区块链
币界网6月24日讯,全球豪华汽车领域迎来颠覆性变革!DeLorean汽车公司今日宣布,基于SuiNetwork打造的全球首个区块链汽车预订市场正式上线,用户可通过加密货币直接预订其旗舰电动跑车Alpha5,并在等待交付期间通过质押资产赚取收益。这一创新模式不仅解决了传统汽车预订的退款难、周期长等痛点,更将区块链技术的透明性与金融属性深度融合。受此消息刺激,去中心化交易所XBIT平台上的黄金稳定币x
- 扩展前文的 Qt GUI 调试工具,添加 QTreeView 控件以显示设备数据的层次结构,支持更多 Modbus 功能码
zhxup606
C++qt开发语言
扩展前文的QtGUI调试工具,添加QTreeView控件以显示设备数据的层次结构,支持更多Modbus功能码(新增0x05写单个线圈),并实现详细的CSV日志保存功能。代码将基于Qt网络编程(QtNetwork),集成ReferenceClass、PointerClass、SerialPort、ModbusTCPDebugger和ModbusConverter,使用std::string、std:
- (转)优秀的 python 机器学习库
patrick75
python机器学习python机器学习
优秀的python机器学习库IntroductionThereisnodoubtthatneuralnetworks,andmachinelearningingeneral,hasbeenoneofthehottesttopicsintechthepastfewyearsorso.It’seasytoseewhywithallofthereallyinterestinguse-casestheys
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- 卷积神经网络(Convolutional Neural Network, CNN)
不想秃头的程序
神经网络语音识别人工智能深度学习网络卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专门用于处理图像、视频等网格数据的深度学习模型。它通过卷积层自动提取数据的特征,并利用空间共享权重和池化层减少参数量和计算复杂度,成为计算机视觉领域的核心技术。以下是CNN的详细介绍:一、核心思想CNN的核心目标是从图像中自动学习层次化特征,并通过空间共享权重和平移不变性减少参数量和计算成本。其关键组件包括:卷积层(
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- Linux netstat 指令
halugin
Linux指令linux运维
Linuxnetstat指令netstat(NetworkStatistics)是Linux系统中用于查看网络状态、连接、路由表和接口统计信息的经典命令行工具。它为系统管理员和开发人员提供了强大的网络诊断功能,帮助分析网络连接、监控流量以及排查网络问题。尽管在现代Linux系统中,netstat正在被更新的工具(如ss)部分取代,但其简单性和广泛适用性使其仍然是许多场景下的首选工具。什么是nets
- docker启动的rabbitmq搭建并集群和高可用
黑皮爱学习
mqdockerrabbitmqruby
Docker搭建RabbitMQ集群步骤以下是使用Docker快速搭建RabbitMQ集群的详细步骤,包含配置文件、网络设置和集群组建过程。1.创建自定义网络首先创建一个Docker网络,使容器间可以通过名称互相访问:dockernetworkcreaterabbitmq-cluster2.准备配置文件创建一个配置目录(例如~/rabbitmq-config),并在其中创建以下文件:rabbitm
- 如何使用 ligpng 库进行图片解码应用开发openwrt linux sdd20x平台
ruihuan_2000
SSD20Xopenwrtlinux嵌入式c++
文章目录前言一、libpng是什么?二、使用步骤1.引入库及头文件2.解码过程总结前言如何使用libpng库进行图片解码应用开发。一、libpng是什么?libpng是一个开源的、跨平台的图像处理库,用于处理和支持PNG(PortableNetworkGraphics)图像格式。PNG是一种无损压缩的图像格式,广泛用于互联网上的图像传输和存储。libpng提供了一系列的API和函数,使开发者可以在
- libpng 库的编译与初步使用
安静漫游
编程
libpng(PortableNetworkGraphics)是一个用于处理和显示PNG图像文件的开源库。它提供了一组函数和工具,用于读取、写入和操作PNG图像。在本文中,我们将详细介绍如何编译libpng库并进行初步使用。步骤1:下载libpng源代码首先,我们需要从官方网站(https://libpng.sourceforge.io/)上下载libpng的源代码。选择最新版本的源代码包,并将其
- 使用YOLOv5-ONNX-PyQT-EXE: 全栈式对象检测应用的构建与部署
使用YOLOv5-ONNX-PyQT-EXE:全栈式对象检测应用的构建与部署去发现同类优质开源项目:https://gitcode.com/在计算机视觉领域,实时对象检测是一个至关重要的任务。是一个开源项目,它将流行的YOLOv5对象检测模型集成到ONNX(OpenNeuralNetworkExchange)中,并通过PyQT构建了一个可执行的应用程序,使得非开发人员也能轻松地进行对象检测。项目简
- RNN笔记
sjtu_哈基坤
LLM随笔rnn笔记人工智能
来源见此处概述RNN(RecurrentNeuralNetwork)RNN之所以称为循环神经网络,是因为一个序列的当前的输出与前面的输出也有关.具体表现是网络会对前面的信息进行记忆并且应用于当前输出的计算中.即隐藏层之间的节点也是有连接的.并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出.理论上RNN能对任何长度的序列进行处理,但是在实践中,为了降低复杂性,往往假设当前状态只与前面几
- Linux系统的网络服务
杨了个杨8982
linux基础linux运维服务器
一、Centos系统1.NetworkManager从CentOS7开始,NetworkManager成为默认的网络管理服务,负责管理网络连接,支持有线、无线、VPN等多种连接方式,可通过图形界面或nmcli命令行工具进行配置。2.network传统的网络服务,在早期的CentOS版本中是主要的网络管理方式,通过配置/etc/sysconfig/network-scripts/目录下的配置文件来设
- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- DBC差异比较工具DBCCompare_原理介绍(四)
99乘法口诀万物皆可变
C#CANSelf测试工具c#
DBC比对工具UI图片DBC比对工具:功能详解与源码分析在现代汽车开发和诊断过程中,DBC(DatabaseContainer)文件扮演着至关重要的角色。它们详细描述了CAN(ControllerAreaNetwork)网络中各消息和信号的详细信息。然而,随着项目的推进和迭代,DBC文件也会随之发生变化。为了确保新旧DBC文件的一致性,并找出其中的差异,DBC比对工具应运而生。本文将详细介绍一款D
- 用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
点我头像干啥
AI深度学习pytorch神经网络
引言在深度学习领域,研究人员不断探索更接近生物神经系统工作方式的模型。液态神经网络(LiquidNeuralNetworks,LNN)正是这样一种受生物神经元动态特性启发的创新架构。本文将带你了解LNN的核心概念,并展示如何使用PyTorch实现这种前沿模型。一、什么是液态神经网络?液态神经网络是由MIT研究人员提出的一种新型神经网络架构,它模仿了生物神经系统的几个关键特性:动态连接:神经元之间的
- 网络工程师知识点精讲与例题解析:网络层技术
软考和人工智能学堂
网络管理员网络工程师网络规划设计师网络
一、网络层概述网络层(NetworkLayer)是OSI参考模型的第三层,位于数据链路层和传输层之间,主要负责跨网络的数据传输。其主要功能包括:逻辑寻址(IP地址):为设备分配唯一标识(IPv4/IPv6)。路由选择:确定数据包从源到目的的最佳路径(如RIP、OSPF、BGP)。分组转发:根据路由表将数据包发送到下一跳。拥塞控制:避免网络过载(如ICMP源抑制报文)。异构网络互联:连接不同链路层技
- 深度学习在人脸识别中的应用及Python实现
loop_syntax648
机器学习-深度学习
人脸识别是一种通过计算机技术识别和验证人脸的方法,近年来深度学习在人脸识别领域取得了显著的进展。深度学习模型能够学习和提取人脸图像中的高级特征,从而实现准确的人脸识别。本文将介绍深度学习在人脸识别中的应用,并提供Python实现的源代码。深度学习模型通常基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)进行人脸识别。CNN是一种专门用于处理图像和视觉数据的神经网络模型
- 内容分发网络CDN
dream_heheda
AliCloud云计算
CDN的概念内容分发网络CDN(ContentDeliveryNetwork)是解决网络连接速度的问题,可以提高访问速度。1.业务背景一般客户通过互联网访问网站服务,客户访问服务器的流程如下:Client->Internet->Server。在这个过程中,有几个影响访问速度(用户打开网页速度)的因素:client和internet之间的连接,internet中间的连接,服务器和internet之间
- 【VLAN】zerotier的安装和使用
zhuyan108
php开发语言
一、安装1.注册ZeroTier账号访问ZeroTier官网。点击SignUp注册账号,填写邮箱和密码。登录后,进入控制台(MyNetworks)。2.创建虚拟网络在控制台点击CreateANetwork。记录生成的NetworkID(类似8056c2e21c000001),这是加入网络的唯一标识。可选配置:NetworkName:为网络命名(如MyHomeNetwork)。Private/Pub
- 华为高斯数据库的数据类型
ls65535
华为数据库
华为高斯数据库的数据类型国产数据库华为高斯的GaussDB的数据类型华为高斯数据库的数据类型✅一、数值类型(NumericTypes)✅二、字符类型(CharacterTypes)✅三、布尔类型(BooleanType)✅四、日期和时间类型(Date&TimeTypes)✅五、二进制类型(BinaryTypes)✅六、JSON和XML类型✅七、网络类型(NetworkAddressTypes)✅八
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理