SQL Tuning Advisor使用实例

在oracle10g之前,想要优化一个sql语句是比较麻烦,但是在oracle10g这个版本推出的SQL Tuning Advisor这个工具,能大大减少sql调优的工作量,不过要想使用SQL Tuning Advisor,一定要保证你的优化器是CBO模式。

1.首先需要创建一个用于调优的用户bamboo,并授予advisor给创建的用户

SQL> create user bamboo identified by bamboo;

User created.

SQL> grant connect,resource to bamboo;

Grant succeeded.

SQL> grant advisor to bamboo;

Grant succeeded.

2.创建用户做测试的2张表,大表里面插入500万条数据,小表里面插入10万条数据,其创建方法如下

SQL> create table bigtable (id number(10),name varchar2(100));

Table created.

SQL> begin

2 for i in 1..5000000 loop

3 insert into bigtable values(i,'test'||i);

4 end loop;

5 end;

6 /

PL/SQL procedure successfully completed.

SQL> commti;

SQL> create table smalltable (id number(10),name varchar2(100));

Table created.

SQL> begin

2 for i in 1..100000 loop

3 insert into smalltable values(i,'test'||i);

4 end loop;

5 end;

6 /

PL/SQL procedure successfully completed.

SQL> commti;

3.然后对bigtable和smalltable做一个等连接查询,然后跟踪其执行计划

SQL> select a.id,a.name,b.id,b.name from bigtable a,smalltable b where a.id=b.id and a.id=40000;

ID NAME ID NAME

---------- ---------------------------------------- ---------- ----------------------------------------

40000 test40000 40000 test40000


Execution Plan

----------------------------------------------------------

Plan hash value: 1703851322

---------------------------------------------------------------------------------

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

---------------------------------------------------------------------------------

| 0 | SELECT STATEMENT | | 839 | 106K| 3656 (5)| 00:00:44 |

|* 1 | HASH JOIN | | 839 | 106K| 3656 (5)| 00:00:44 |

|* 2 | TABLE ACCESS FULL| SMALLTABLE | 5 | 325 | 71 (3)| 00:00:01 |

|* 3 | TABLE ACCESS FULL| BIGTABLE | 173 | 11245 | 3584 (5)| 00:00:44 |

---------------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

1 - access("A"."ID"="B"."ID")

2 - filter("B"."ID"=40000)

3 - filter("A"."ID"=40000)

Note

-----

- dynamic sampling used for this statement

Statistics

----------------------------------------------------------

9 recursive calls

0 db block gets

16151 consistent gets

11469 physical reads

0 redo size

588 bytes sent via SQL*Net to client

385 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client

2 sorts (memory)

0 sorts (disk)

1 rows processed

熟悉执行计划的就可以看出,这个sql执行是很慢的,2个表都做的是全表扫描,并且其物理读是11469,按照优化的经验,给2个表的id创建索引,减少查询时候的物理读,下面我们就看看通过优化器,oracle能我们什么样的建议呢?

4.下面就通过DBMS_SQLTUNE包的CREATE_TUNING_TASK来创建一个优化任务,然后通过DBMS_SQLTUNE.EXECUTE_TUNING_TASK来执行调优任务,生成调优建议

SQL> DECLARE

2 my_task_name VARCHAR2(30);

3 my_sqltext CLOB;

4 BEGIN

5 my_sqltext := 'select a.id,a.name,b.id,b.name from bigtable a,smalltable b where a.id=b.id and a.id=40000';

6

7 my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK(

8 sql_text => my_sqltext,

9 user_name => 'SCOTT',

10 scope => 'COMPREHENSIVE',

11 time_limit => 60,

12 task_name => 'test_sql_tuning_task1',

13 description => 'Task to tune a query');

14 DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task_name => 'test_sql_tuning_task1');

15 END;

16 /

5.执行的过程中,也可以通过user_advisor_tasks或者dba_advisor_tasks来查看调优任务执行的状况

SQL> select task_name,ADVISOR_NAME,STATUS from user_advisor_tasks;

TASK_NAME ADVISOR_NAME STATUS

------------------------------ ---------------------------------------- ---------------------------------

test_sql_tuning_task1 SQL Tuning Advisor COMPLETED

如果status是EXECUTING,则表示任务正在执行,如果为COMPLETED,则任务已经执行完毕

6.通过调用dbms_sqltune.report_tuning_task可以查询调优的结果,不过在查询结果之前,得设置sqlplus的环境,如果不设置,则查询的结果出不来

SQL> set long 999999

SQL> set LONGCHUNKSIZE 999999

SQL> set serveroutput on size 999999

SQL> set linesize 200

SQL> select dbms_sqltune.report_tuning_task('test_sql_tuning_task1') from dual;

SQL> select dbms_sqltune.report_tuning_task('test_sql_tuning_task1') from dual;

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

---------------------------------------------------------------------------------------------------------------------------------

GENERAL INFORMATION SECTION

-------------------------------------------------------------------------------

Tuning Task Name : test_sql_tuning_task1

Tuning Task Owner : BAMBOO

Scope : COMPREHENSIVE

Time Limit(seconds) : 60

Completion Status : COMPLETED

Started at : 10/13/2011 05:07:53

Completed at : 10/13/2011 05:08:18

Number of Statistic Findings : 2

Number of Index Findings : 1

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

----------------------------------------------------------------------------------------------------------------------------------

Schema Name: SCOTT

SQL ID : 7arau1k5a3mv1

SQL Text : select a.id,a.name,b.id,b.name from bigtable a,smalltable b

where a.id=b.id and a.id=40000

-------------------------------------------------------------------------------

FINDINGS SECTION (3 findings)

-------------------------------------------------------------------------------


DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

----------------------------------------------------------------------------------------------------------------------------------

1- Statistics Finding

---------------------

Table "SCOTT"."SMALLTABLE" was not analyzed.

Recommendation

--------------

- Consider collecting optimizer statistics for this table.

execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>

'SMALLTABLE', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

method_opt => 'FOR ALL COLUMNS SIZE AUTO');


DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

----------------------------------------------------------------------------------------------------------------------------------

Rationale

---------

The optimizer requires up-to-date statistics for the table in order to

select a good execution plan.

2- Statistics Finding

---------------------

Table "SCOTT"."BIGTABLE" was not analyzed.

Recommendation

--------------

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

----------------------------------------------------------------------------------------------------------------------------------

- Consider collecting optimizer statistics for this table.

execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>

'BIGTABLE', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

method_opt => 'FOR ALL COLUMNS SIZE AUTO');

Rationale

---------

The optimizer requires up-to-date statistics for the table in order to

select a good execution plan.

3- Index Finding (see explain plans section below)

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

---------------------------------------------------------------------------------------------------------------------------------

The execution plan of this statement can be improved by creating one or more

indices.

Recommendation (estimated benefit: 100%)

----------------------------------------

- Consider running the Access Advisor to improve the physical schema design

or creating the recommended index.

create index SCOTT.IDX$$_00790001 on SCOTT.SMALLTABLE('ID');

- Consider running the Access Advisor to improve the physical schema design

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

----------------------------------------------------------------------------------------------------------------------------------

or creating the recommended index.

create index SCOTT.IDX$$_00790002 on SCOTT.BIGTABLE('ID');

Rationale

---------

Creating the recommended indices significantly improves the execution plan

of this statement. However, it might be preferable to run "Access Advisor"

using a representative SQL workload as opposed to a single statement. This

will allow to get comprehensive index recommendations which takes into

account index maintenance overhead and additional space consumption.


DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

----------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------

EXPLAIN PLANS SECTION

-------------------------------------------------------------------------------

1- Original

-----------

Plan hash value: 1703851322

---------------------------------------------------------------------------------

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

---------------------------------------------------------------------------------

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

----------------------------------------------------------------------------------------------------------------------------------

| 0 | SELECT STATEMENT | | 839 | 106K| 3656 (5)| 00:00:44 |

|* 1 | HASH JOIN | | 839 | 106K| 3656 (5)| 00:00:44 |

|* 2 | TABLE ACCESS FULL| SMALLTABLE | 5 | 325 | 71 (3)| 00:00:01 |

|* 3 | TABLE ACCESS FULL| BIGTABLE | 173 | 11245 | 3584 (5)| 00:00:44 |

---------------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

1 - access("A"."ID"="B"."ID")

2 - filter("B"."ID"=40000)

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

---------------------------------------------------------------------------------------------------------------------------------

3 - filter("A"."ID"=40000)

2- Using New Indices

--------------------

Plan hash value: 3720188830

------------------------------------------------------------------------------------------------

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

------------------------------------------------------------------------------------------------

| 0 | SELECT STATEMENT | | 1 | 130 | 5 (0)| 00:00:01 |

| 1 | TABLE ACCESS BY INDEX ROWID | BIGTABLE | 1 | 65 | 3 (0)| 00:00:01 |

DBMS_SQLTUNE.REPORT_TUNING_TASK('TEST_SQL_TUNING_TASK1')

---------------------------------------------------------------------------------------------------------------------------------

| 2 | NESTED LOOPS | | 1 | 130 | 5 (0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID| SMALLTABLE | 1 | 65 | 2 (0)| 00:00:01 |

|* 4 | INDEX RANGE SCAN | IDX$$_00790001 | 1 | | 1 (0)| 00:00:01 |

|* 5 | INDEX RANGE SCAN | IDX$$_00790002 | 1 | | 2 (0)| 00:00:01 |

------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

4 - access("B"."ID"=40000)

5 - access("A"."ID"=40000)

从上面的结果可以看到oracle的调优顾问给我们3条建议:

(1)SCOTT.SMALLTABLE表没有做分析,需要做一下表结构的分析,并且给出一个分析的建议,如下所示

execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>

'SMALLTABLE', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

method_opt => 'FOR ALL COLUMNS SIZE AUTO');

(2)SCOTT.BIGTABLE表没有做分析,需要做一下表结构的分析,并且给出一个分析的建议,如下所示

execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>

'BIGTABLE', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

method_opt => 'FOR ALL COLUMNS SIZE AUTO');

(3)oracle建议我们在表SCOTT.SMALLTABLE,SCOTT.BIGTABLE的id列创建一个bitree索引,给的建议如下

create index SCOTT.IDX$$_00790002 on SCOTT.BIGTABLE('ID');

create index SCOTT.IDX$$_00790001 on SCOTT.SMALLTABLE('ID');

当然创建索引的名字可以改成别的名字

通过以上查看oracle的调优顾问给的建议,基本和我们在前面给出的调优方案是一致,因此当我们给一个大的SQL做优化的时候,可以先使用oracle调优顾问,得到一些调优方案,然后根据实际情况做一些调整就可以。

以下就是执行oracle调优顾问的建议,重新执行select a.id,a.name,b.id,b.name from bigtable a,smalltable b where a.id=b.id and a.id=40000这天语句得到的执行计划,可以看出查询时间和物理读大大减少

SQL> select a.id,a.name,b.id,b.name from bigtable a,smalltable b where a.id=b.id and a.id=40000;

ID NAME ID NAME

---------- ---------------------------------------- ---------- ----------------------------------------

40000 test40000 40000 test40000


Execution Plan

----------------------------------------------------------

Plan hash value: 777647921

-------------------------------------------------------------------------------------------------

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

-------------------------------------------------------------------------------------------------

| 0 | SELECT STATEMENT | | 1 | 31 | 5 (0)| 00:00:01 |

| 1 | TABLE ACCESS BY INDEX ROWID | BIGTABLE | 1 | 17 | 3 (0)| 00:00:01 |

| 2 | NESTED LOOPS | | 1 | 31 | 5 (0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID| SMALLTABLE | 1 | 14 | 2 (0)| 00:00:01 |

|* 4 | INDEX RANGE SCAN | I_ID_SAMLLTABLE | 1 | | 1 (0)| 00:00:01 |

|* 5 | INDEX RANGE SCAN | I_ID_BIGTABLE | 1 | | 2 (0)| 00:00:01 |

-------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

4 - access("B"."ID"=40000)

5 - access("A"."ID"=40000)


Statistics

----------------------------------------------------------

0 recursive calls

0 db block gets

9 consistent gets

0 physical reads

0 redo size

588 bytes sent via SQL*Net to client

385 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client

0 sorts (memory)

0 sorts (disk)

1 rows processed


oracle视频教程请关注:http://down.51cto.com/4202939/up

你可能感兴趣的:(sql,tuning,Advisor,使用实例)