经过之前的学习,我们已经可以在利用光线追踪实现一些简单的场景。今天我们要探讨的是图形学里面的三种基本光源:方向光源,点光源,聚光灯。
不同于利用现成的Api,这次会从理论到实际一步步用C++实现。
在老师的建议下,我将图形引擎换成了SDL,最终的渲染效果比之前的好了很多,原来的GLFW虽然能够很好的兼容OpenGL,但并没提供对像素的控制,而SDL有Surface。
对与GLFW,本人觉得其终究只能算是glut的替代品,而SDL应当是一个完善的游戏引擎,而且文档和教程都非常地丰富。
有关SDL的文章,请猛击这里。
方向光源是一组平行光。所以方向光源类只有方向和颜色两个属性。用一个向量对象来表示方向,颜色对象表示光的颜色。
阴影
回忆一下入门文章的第一幅图片,在有光的情况下,判断某一点是否是阴影,即判断是否能够从那一点看到光。
那么光线追踪的过程就是:
从摄像机产生光线->投射场景->若与物体相交,从该点产生光线,方向为光源方向的饭方向->投射场景->若与场景中的物体相交,则属于阴影区域。
方向光源的实现:
/***************************************************************************** Copyright: 2012, ustc All rights reserved. contact:[email protected] File name: directlight.h Description:directlight's h doc. Author:Silang Quan Version: 1.0 Date: 2012.12.04 *****************************************************************************/ #ifndef DIRECTLIGHT_H #define DIRECTLIGHT_H #include "color.h" #include "gvector3.h" #include "union.h" class DirectLight { public: DirectLight(); DirectLight(Color _color,GVector3 _direction,bool _isShadow); virtual ~DirectLight(); Color intersect(Union &scence,IntersectResult &result); protected: private: bool isShadow; Color color; GVector3 direction; }; #endif // DIRECTLIGHT_H
/***************************************************************************** Copyright: 2012, ustc All rights reserved. contact:[email protected] File name: directlight.cpp Description:directlight's cpp doc. Author:Silang Quan Version: 1.0 Date: 2012.12.04 *****************************************************************************/ #include "directlight.h" DirectLight::DirectLight() { //ctor } DirectLight::DirectLight(Color _color,GVector3 _direction,bool _isShadow) { color=_color; direction=_direction; isShadow=_isShadow; } DirectLight::~DirectLight() { //dtor } //通过光线与场景的相交结果计算光照结果 Color DirectLight::intersect(Union &scence,IntersectResult &rayResult) { //生产shadowRay的修正值 const float k=1e-4; //生成与光照相反方向的shadowRay GVector3 shadowDir=direction.normalize().negate(); CRay shadowRay=CRay(rayResult.position+rayResult.normal*k,shadowDir); //计算shadowRay是否与场景相交 IntersectResult lightResult = scence.isIntersected(shadowRay); Color resultColor = Color::black(); if(isShadow) { if(lightResult.object) { return resultColor; } } //计算光强 float NdotL=rayResult.normal.dotMul(shadowDir); if (NdotL >= 0) resultColor=resultColor.add(this->color.multiply(NdotL)); //return this->color; return resultColor; }
需要注意的是intersect函数,输入的参数是场景的引用和光线和场景相交结果的引用,返回一个Color。
若shadowRay没有与场景相交,那么就要对那一点接收到的光强进行计算。
与之有关的就是平面法向量与光的方向的夹角,当这个夹角约大,接受的光强就越小,想想看,中午太阳光是不是最强,傍晚是不是比较弱一些:0).
计算夹角利用的是向量的点乘。
渲染一下:
void renderLight() { Uint32 pixelColor; Union scene; PerspectiveCamera camera( GVector3(0, 10, 10),GVector3(0, 0, -1),GVector3(0, 1, 0), 90); Plane* plane1=new Plane(GVector3(0, 1, 0),0.0); Plane* plane2=new Plane(GVector3(0, 0, 1),-50); Plane* plane3=new Plane(GVector3(1, 0, 0),-20); CSphere* sphere1=new CSphere(GVector3(0, 10, -10), 10.0); DirectLight light1(Color::white().multiply(10), GVector3(-1.75, -2, -1.5),true); scene.push(plane1); scene.push(plane2); scene.push(plane3); scene.push(sphere1); long maxDepth=20; float dx=1.0f/WINDOW_WIDTH; float dy=1.0f/WINDOW_HEIGHT; float dD=255.0f/maxDepth; for (long y = 0; y < WINDOW_HEIGHT; ++y) { float sy = 1 - dy*y; for (long x = 0; x < WINDOW_WIDTH; ++x) { float sx =dx*x; CRay ray(camera.generateRay(sx, sy)); IntersectResult result = scene.isIntersected(ray); if (result.isHit) { Color color=light1.intersect(scene,result); pixelColor=SDL_MapRGB(screen->format,std::min(color.r*255,(float)255),std::min(color.g*255,(float)255.0),std::min(color.b*255,(float)255.0)); drawPixel(screen, x, y,pixelColor); } } } }
点光源/点光灯(point light),又称全向光源/泛光源/泛光灯(omnidirectional light/omni light),是指一个无限小的点,向所有光向平均地散射光。最常见的点光源就是电灯泡了,需要确定光源的位置,还有就是光的颜色。
在计算光强的时候,需要乘以一个衰减系数,接收到的能量和距离的关系,是成平方反比定律的:
点光源的实现:
/***************************************************************************** Copyright: 2012, ustc All rights reserved. contact:[email protected] File name: pointlight.h Description:pointlight's h doc. Author:Silang Quan Version: 1.0 Date: 2012.12.04 *****************************************************************************/ #ifndef POINTLIGHT_H #define POINTLIGHT_H #include "color.h" #include "gvector3.h" #include "union.h" class PointLight { public: PointLight(); PointLight(Color _color,GVector3 _position,bool _isShadow); virtual ~PointLight(); Color intersect(Union &scence,IntersectResult &result); protected: private: bool isShadow; Color color; GVector3 position; }; #endif // POINTLIGHT_H
/***************************************************************************** Copyright: 2012, ustc All rights reserved. contact:[email protected] File name: pointlight.cpp Description:pointlight's cpp doc. Author:Silang Quan Version: 1.0 Date: 2012.12.04 *****************************************************************************/ #include "pointlight.h" PointLight::PointLight() { //ctor } PointLight::~PointLight() { //dtor } PointLight::PointLight(Color _color,GVector3 _position,bool _isShadow) { color=_color; position=_position; isShadow=_isShadow; } //通过光线与场景的相交结果计算光照结果 Color PointLight::intersect(Union &scence,IntersectResult &rayResult) { //生产shadowRay的修正值 const float k=1e-4; GVector3 delta=this->position-rayResult.position; float distance=delta.getLength(); //生成与光照相反方向的shadowRay CRay shadowRay=CRay(rayResult.position,delta.normalize()); GVector3 shadowDir=delta.normalize(); //计算shadowRay是否与场景相交 IntersectResult lightResult = scence.isIntersected(shadowRay); Color resultColor = Color::black(); Color returnColor=Color::black(); //如果shadowRay与场景中的物体相交 if(lightResult.object&&(lightResult.distance<=distance)) { return resultColor;; } else { resultColor=this->color.divide(distance*distance); float NdotL=rayResult.normal.dotMul(shadowDir); if (NdotL >= 0) returnColor=returnColor.add(resultColor.multiply(NdotL)); return returnColor; } }
在rendeLight函数中初始化点光源:
PointLight light2(Color::white().multiply(200), GVector3(10,20,10),true);
聚光灯点光源的基础上,加入圆锥形的范围,最常见的聚光灯就是手电了,或者舞台的投射灯。聚光灯可以有不同的模型,以下采用Direct3D固定功能管道(fixed-function pipeline)用的模型做示范。
聚光灯有一个主要方向s,再设置两个圆锥范围,称为内圆锥和外圆锥,两圆锥之间的范围称为半影(penumbra)。内外圆锥的内角分别为和。聚光灯可计算一个聚光灯系数,范围为[0,1],代表某方向的放射比率。内圆锥中系数为1(最亮),内圆锥和外圆锥之间系数由1逐渐变成0。另外,可用另一参数p代表衰减(falloff),决定内圆锥和外圆锥之间系数变化。方程式如下:
聚光灯的实现
/***************************************************************************** Copyright: 2012, ustc All rights reserved. contact:[email protected] File name: spotlight.h Description:spotlight's h doc. Author:Silang Quan Version: 1.0 Date: 2012.12.04 *****************************************************************************/ #ifndef SPOTLIGHT_H #define SPOTLIGHT_H #include "color.h" #include "gvector3.h" #include "union.h" #include <math.h> class SpotLight { public: SpotLight(); SpotLight(Color _color,GVector3 _position,GVector3 _direction,float _theta,float _phi,float _fallOff,bool _isShadow); virtual ~SpotLight(); Color intersect(Union &scence,IntersectResult &result); protected: private: Color color; GVector3 position; GVector3 direction; bool isShadow; float theta; float phi; float fallOff; //negate the Direction GVector3 directionN; float cosTheta; float cosPhi; float baseMultiplier; }; #endif // SPOTLIGHT_H
/***************************************************************************** Copyright: 2012, ustc All rights reserved. contact:[email protected] File name: pointlight.cpp Description:pointlight's cpp doc. Author:Silang Quan Version: 1.0 Date: 2012.12.04 *****************************************************************************/ #include "pointlight.h" PointLight::PointLight() { //ctor } PointLight::~PointLight() { //dtor } PointLight::PointLight(Color _color,GVector3 _position,bool _isShadow) { color=_color; position=_position; isShadow=_isShadow; } //通过光线与场景的相交结果计算光照结果 Color PointLight::intersect(Union &scence,IntersectResult &rayResult) { //生产shadowRay的修正值 const float k=1e-4; GVector3 delta=this->position-rayResult.position; float distance=delta.getLength(); //生成与光照相反方向的shadowRay CRay shadowRay=CRay(rayResult.position,delta.normalize()); GVector3 shadowDir=delta.normalize(); //计算shadowRay是否与场景相交 IntersectResult lightResult = scence.isIntersected(shadowRay); Color resultColor = Color::black(); Color returnColor=Color::black(); //如果shadowRay与场景中的物体相交 if(lightResult.object&&(lightResult.distance<=distance)) { return resultColor;; } else { resultColor=this->color.divide(distance*distance); float NdotL=rayResult.normal.dotMul(shadowDir); if (NdotL >= 0) returnColor=returnColor.add(resultColor.multiply(NdotL)); return returnColor; } }
在场景中初始化一个聚光灯:
SpotLight light3(Color::white().multiply(1350),GVector3(30, 30, 20),GVector3(-1, -0.7, -1), 20, 30, 0.5,true);
这里用到了vector容器。场景中布置了很多个点光源,渲染耗时将近半分钟。
void renderLights() { Uint32 pixelColor; Union scene; PerspectiveCamera camera( GVector3(0, 10, 10),GVector3(0, 0, -1),GVector3(0, 1, 0), 90); Plane* plane1=new Plane(GVector3(0, 1, 0),0.0); Plane* plane2=new Plane(GVector3(0, 0, 1),-50); Plane* plane3=new Plane(GVector3(1, 0, 0),-20); CSphere* sphere1=new CSphere(GVector3(0, 10, -10), 10.0); CSphere* sphere2=new CSphere(GVector3(5, 5, -7), 3.0); PointLight *light2; vector<PointLight> lights; for (int x = 10; x <= 30; x += 4) for (int z = 20; z <= 40; z += 4) { light2=new PointLight(Color::white().multiply(80),GVector3(x, 50, z),true); lights.push_back(*light2); } scene.push(plane1); scene.push(plane2); scene.push(plane3); scene.push(sphere1); //scene.push(sphere2); long maxDepth=20; float dx=1.0f/WINDOW_WIDTH; float dy=1.0f/WINDOW_HEIGHT; float dD=255.0f/maxDepth; for (long y = 0; y < WINDOW_HEIGHT; ++y) { float sy = 1 - dy*y; for (long x = 0; x < WINDOW_WIDTH; ++x) { float sx =dx*x; CRay ray(camera.generateRay(sx, sy)); IntersectResult result = scene.isIntersected(ray); if (result.isHit) { Color color=Color::black(); for(vector<PointLight>::iterator iter=lights.begin();iter!=lights.end();++iter) { color=color.add(iter->intersect(scene,result)); } pixelColor=SDL_MapRGB(screen->format,std::min(color.r*255,(float)255),std::min(color.g*255,(float)255.0),std::min(color.b*255,(float)255.0)); drawPixel(screen, x, y,pixelColor); } } } }
渲染结果:
把原先场景中的球体去掉,布置3盏聚光动,发射红绿蓝,可以很清晰地看见它们融合之后的颜色。
void renderTriColor() { Uint32 pixelColor; Union scene; PerspectiveCamera camera( GVector3(0, 40, 15),GVector3(0, -1.25, -1),GVector3(0, 1, 0), 60); Plane* plane1=new Plane(GVector3(0, 1, 0),0.0); Plane* plane2=new Plane(GVector3(0, 0, 1),-50); Plane* plane3=new Plane(GVector3(1, 0, 0),-20); PointLight light0(Color::white().multiply(1000), GVector3(30,40,20),true); SpotLight light1(Color::red().multiply(2000),GVector3(0, 30, 10),GVector3(0, -1, -1), 20, 30, 1,true); SpotLight light2(Color::green().multiply(2000),GVector3(6, 30, 20),GVector3(0, -1, -1), 20, 30, 1,true); SpotLight light3(Color::blue().multiply(2000),GVector3(-6, 30, 20),GVector3(0, -1, -1), 20, 30, 1,true); scene.push(plane1); scene.push(plane2); scene.push(plane3); long maxDepth=20; float dx=1.0f/WINDOW_WIDTH; float dy=1.0f/WINDOW_HEIGHT; float dD=255.0f/maxDepth; for (long y = 0; y < WINDOW_HEIGHT; ++y) { float sy = 1 - dy*y; for (long x = 0; x < WINDOW_WIDTH; ++x) { float sx =dx*x; CRay ray(camera.generateRay(sx, sy)); IntersectResult result = scene.isIntersected(ray); if (result.isHit) { Color color=light0.intersect(scene,result); color=color.add(light1.intersect(scene,result)); color=color.add(light2.intersect(scene,result)); color=color.add(light3.intersect(scene,result)); pixelColor=SDL_MapRGB(screen->format,std::min(color.r*255,(float)255),std::min(color.g*255,(float)255.0),std::min(color.b*255,(float)255.0)); drawPixel(screen, x, y,pixelColor); } } } }
花了大概一周的时间来实现这个光照效果,虽然网上有相关文章,但亲自动手来实现又是另外一回事了。
当然,这都没有结束,期待后续。