用两天时间从头至尾仔细看了CserialPort类,一句一句的分析,终于搞明白了,以下是源程序和注释。
SerialPort.h文件代码如下:
#ifndef __SERIALPORT_H__
#define __SERIALPORT_H__
#define WM_COMM_BREAK_DETECTED WM_USER+1 // A break was detected on input.
#define WM_COMM_CTS_DETECTED WM_USER+2 // The CTS (clear-to-send) signal changed state.
#define WM_COMM_DSR_DETECTED WM_USER+3 // The DSR (data-set-ready) signal changed state.
#define WM_COMM_ERR_DETECTED WM_USER+4 // A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
#define WM_COMM_RING_DETECTED WM_USER+5 // A ring indicator was detected.
#define WM_COMM_RLSD_DETECTED WM_USER+6 // The RLSD (receive-line-signal-detect) signal changed state.
#define WM_COMM_RXCHAR WM_USER+7 // A character was received and placed in the input buffer.
#define WM_COMM_RXFLAG_DETECTED WM_USER+8 // The event character was received and placed in the input buffer.
#define WM_COMM_TXEMPTY_DETECTED WM_USER+9 // The last character in the output buffer was sent.
class CSerialPort
{
public:
CSerialPort();// 构造函数
//析构函数虚拟化了,是为了不同端口对象被消灭的时候,可以进行不同的收尾工作 virtual ~CSerialPort();
//端口初始化函数,设定了宿主窗口,以及一些默认参数
BOOL InitPort(CWnd* pPortOwner, UINT portnr = 1, UINT baud = 19200, char parity = 'N', UINT databits = 8, UINT stopsbits = 1, DWORD dwCommEvents = EV_RXCHAR | EV_CTS, UINT nBufferSize = 512);
BOOL StartMonitoring();// COM口监视控制函数,开,重启,关
BOOL RestartMonitoring();
BOOL StopMonitoring();
DWORD GetWriteBufferSize();//获取写缓冲区的大小
DWORD GetCommEvents();//获取COM口的事件类型
DCB GetDCB();//获取设备控制块信息,返回块结构类型
//向端口写数据函数
void WriteToPort(const char* string);//这里加了个const 原来没有 但是 加了就不报错了
protected:
// protected memberfunctions
void ProcessErrorMessage(char* ErrorText);//处理错误消息
static UINT CommThread(LPVOID pParam);//监视线程函数
static void ReceiveChar(CSerialPort* port, COMSTAT comstat);//读
static void WriteChar(CSerialPort* port);//写,前面还定义了一个WriteToPort(const char* string);函数是用来将数据发送到串口
CWinThread* m_Thread; // 创建线程对象,这是要进行线程处理的
CRITICAL_SECTION m_csCommunicationSync; //声明临界区结构对象用来线程同步
BOOL m_bThreadAlive; //线程的状态 死,活
HANDLE m_hShutdownEvent; // 关闭线程的事件句柄
HANDLE m_hComm;//串口句柄
HANDLE m_hWriteEvent;//写句柄
// One element is used for each event. There are two event handles for each port.
// A Write event and a receive character event which is located in the overlapped structure (m_ov.hEvent).
// There is a general shutdown when the port is closed.
HANDLE m_hEventArray[3]; // 放事件的数组.
// 几个结构体
OVERLAPPED m_ov;
COMMTIMEOUTS m_CommTimeouts;//超时
DCB m_dcb;
CWnd* m_pOwner; // owner window
UINT m_nPortNr; // misc
char* m_szWriteBuffer;
DWORD m_dwCommEvents;
DWORD m_nWriteBufferSize;
};
#endif __SERIALPORT_H__
SerialPort.cpp文件代码如下:
#include "stdafx.h"
#include "SerialPort.h"
#include <assert.h>
CSerialPort::CSerialPort()//构造函数 完成成员变量初始化
{
m_hComm = NULL; //串口文件的文件句柄
m_ov.Offset = 0; //初始化Overlapped结构体,包括文件读写位置,还有IO事件
m_ov.OffsetHigh = 0;
m_ov.hEvent = NULL; //这就是串口文件读写IO事件句柄,就是读
m_hWriteEvent = NULL;//写句柄
m_hShutdownEvent = NULL;//控制线程生死的句柄
m_szWriteBuffer = NULL;//缓冲区的大小
m_bThreadAlive = FALSE;//线程是否活着
}
CSerialPort::~CSerialPort()//析构函数,杀线程,清内存
{
do
{
SetEvent(m_hShutdownEvent);//将线程置成有信号,释放任意等待线程
} while (m_bThreadAlive);//线程还活着的话
TRACE("Thread ended\n");// TRACE 宏有点象我们以前在C语言中用的Printf函数,使程序在运行过程中输出一些调试信息,使我们能了解程序的一些状态。
delete [] m_szWriteBuffer;//释放内存空间,析构时需要释放内存
}
// 初始化端口,1-4,只能监测4个,使用了很多API
BOOL CSerialPort::InitPort(CWnd* pPortOwner, // the owner (CWnd) of the port (receives message)
UINT portnr, // portnumber (1..4)
UINT baud, // baudrate
char parity, // parity
UINT databits, // databits
UINT stopbits, // stopbits
DWORD dwCommEvents, // EV_RXCHAR, EV_CTS etc
UINT writebuffersize) // size to the writebuffer
{
assert(portnr > 0 && portnr < 10);/ /编写代码时,我们总是会做出一些假设,断言就是用于在代码中捕捉这些假设。对串口号的限制,意思是从COM1到COM9
assert(pPortOwner != NULL);
if (m_bThreadAlive) // if the thread is alive: Kill先将线程杀死
{
do
{
SetEvent(m_hShutdownEvent); //设置事件的状态为有标记,释放任意等待线程。
} while (m_bThreadAlive);
TRACE("Thread ended\n");
}
if (m_ov.hEvent != NULL)//m_ov.hEvent是串口文件读写IO事件句柄,即 读
ResetEvent(m_ov.hEvent);//这个函数把指定的事件对象设置为无信号状态,不让线程处理
m_ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);//创建事件对象
if (m_hWriteEvent != NULL)
ResetEvent(m_hWriteEvent);
m_hWriteEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
if (m_hShutdownEvent != NULL)
ResetEvent(m_hShutdownEvent);
m_hShutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
// initialize the event objects
m_hEventArray[0] = m_hShutdownEvent; // highest priority杀死线程 读 写 优先级最高以下一次次之(杀死线程后读和写也就都处理不了了)
m_hEventArray[1] = m_ov.hEvent;
m_hEventArray[2] = m_hWriteEvent;
InitializeCriticalSection(&m_csCommunicationSync); //初始化临界区控制 ,这是将这个临界区对象有效。在头文件中用CRITICAL_SECTION声明了m_csCommunicationSync为临界区结构对象
m_pOwner = pPortOwner; // set buffersize for writing and save the owner
if (m_szWriteBuffer != NULL)
delete [] m_szWriteBuffer;//如果内存空间没被释放,则释放内存空间
m_szWriteBuffer = new char[writebuffersize];//分配内存空间
m_nPortNr = portnr;//portnr为串口号参数,将初始化函数中的串口号送给代表串口号的全局变量m_nPortNr(在头文件中定义)以下两个条语句都是送给全局变量。
m_nWriteBufferSize = writebuffersize;
m_dwCommEvents = dwCommEvents;
BOOL bResult = FALSE;//代表串口是否有事件发生的布尔值。后面的程序中: bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);
char *szPort = new char[50];//分配内存空间
char *szBaud = new char[50];
// 进入临界区,代表的是可以对每个端口进行不同设置,因为临界区的作用是防止多个线程访问同一段代码
EnterCriticalSection(&m_csCommunicationSync);
// 查看串口文件IO句柄,便可得知端口状态
if (m_hComm != NULL)
{
CloseHandle(m_hComm);
m_hComm = NULL;
}
sprintf(szPort, "COM%d", portnr); //准备端口号信息,和波特率信息
sprintf(szBaud, "baud=%d parity=%c data=%d stop=%d", baud, parity, databits, stopbits);
m_hComm = CreateFile( // 获取端口文件的句柄,记住,这是文件形式的
szPort, // communication port string (COMX)
GENERIC_READ | GENERIC_WRITE, // read/write types
0, // comm devices must be opened with exclusive access
NULL, // no security attributes
OPEN_EXISTING, // comm devices must use OPEN_EXISTING
FILE_FLAG_OVERLAPPED, // Async I/O允许对文件进行重叠操作,即异步操作
// template must be 0 for comm devices
);
//判断是否有效 ,如果无效会自动产生INVALID_HANDLE_VALUE消息,无效则释放内存
if (m_hComm == INVALID_HANDLE_VALUE)
{
// port not found
delete [] szPort;
delete [] szBaud; //释放第181和182行
char *szPort = new char[50];
char *szBaud = new char[50];
分配的内存空间
return FALSE;
}
// 设置超时。
在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。如果在指定的时间内没有读出或写入指定数量的字符,那么ReadFile或WriteFile的操作就会结束。
COMMTIMEOUTS结构处理超时,头文件中 第96行 定义 超时结构的变量:“ COMMTIMEOUTS m_CommTimeouts;//超时”
要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。
m_CommTimeouts.ReadIntervalTimeout = 1000;
m_CommTimeouts.ReadTotalTimeoutMultiplier = 1000;
m_CommTimeouts.ReadTotalTimeoutConstant = 1000;
m_CommTimeouts.WriteTotalTimeoutMultiplier = 1000;
m_CommTimeouts.WriteTotalTimeoutConstant = 1000;
// 开始配置。超时、事件使能、配置波特率参数。就是把前面的各种参数写入到DCB结构中并使之生效
if (SetCommTimeouts(m_hComm, &m_CommTimeouts))
{
if (SetCommMask(m_hComm, dwCommEvents))//一旦这个句柄对象上获取这个特定的事件,就去处理。SetCommMask函数可以设置一组在应用程序中检测通信设备通信的事件
{
if (GetCommState(m_hComm, &m_dcb))//获取设备表信息,然后SET之。GetCommState函数可以获取通信设备中当前正在发生的通信事件
{
m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // set RTS bit high!
if (BuildCommDCB(szBaud, &m_dcb))//设备控制块DCB填充函数
{
if (SetCommState(m_hComm, &m_dcb)); // normal operation... continue配置串口函数
else
ProcessErrorMessage("SetCommState()");//处理错误消息
}
else
ProcessErrorMessage("BuildCommDCB()");
}
else
ProcessErrorMessage("GetCommState()");
}
else
ProcessErrorMessage("SetCommMask()");
}
else
ProcessErrorMessage("SetCommTimeouts()");
delete [] szPort;//释放内存空间
delete [] szBaud;
//清空端口的各个缓冲区
PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);//清空缓冲区,后面的消息依次为:终止字符输入 终止字符输出 清除输入缓冲区 清除输出缓冲区
//离开临界区,端口已经安全配置
LeaveCriticalSection(&m_csCommunicationSync);
TRACE("Initialisation for communicationport %d completed.\nUse Startmonitor to communicate.\n", portnr);
return TRUE;
}
// 监视线程 这是最重要的函数 负责监视串口发生的各种事件并进行处理
UINT CSerialPort::CommThread(LPVOID pParam)
{
// Cast the void pointer passed to the thread back to
// a pointer of CSerialPort class
CSerialPort *port = (CSerialPort*)pParam;
// Set the status variable in the dialog class to
// TRUE to indicate the thread is running.
port->m_bThreadAlive = TRUE; // Misc. variables
DWORD BytesTransfered = 0;
DWORD Event = 0;
DWORD CommEvent = 0;
DWORD dwError = 0;
COMSTAT comstat;//COMSTAT结构 通信设备状态信息室友该结构来存放的
memset(&comstat,0,sizeof(comstat));//初始化,将里面清零
BOOL bResult = TRUE; // Clear comm buffers at startup
if (port->m_hComm) // check if the port is opened
PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT); //清空缓冲区
// begin forever loop. This loop will run as long as the thread is alive.
for (;;) //死循环
{
// Make a call to WaitCommEvent(). This call will return immediatly
// because our port was created as an async port (FILE_FLAG_OVERLAPPED
// and an m_OverlappedStructerlapped structure specified). This call will cause the
// m_OverlappedStructerlapped element m_OverlappedStruct.hEvent, which is part of the m_hEventArray to
// be placed in a non-signeled state if there are no bytes available to be read,
// or to a signeled state if there are bytes available. If this event handle
// is set to the non-signeled state, it will be set to signeled when a
// character arrives at the port.
// we do this for each port!
//WaitCommEven等待端口事件 ,那些已经被set的事件类型 。异步方式,立即返回。
WaitCommEvent的同步或异步方式取决于句柄m_hComm,在前面第211行m_hComm设置成了异步方式,所以此处WaitCommEvent工作于异步方式
WaitCommEvent函数将和后面的WaitForMultipleObjects函数配合监视串口。
WaitCommEvent有错误的话,检查错误并清理错误,无错误 事件发生时用WaitForMultipleObjects确认具体事件。后面会详细说明。
bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);//调用成功返回非零值,失败返回0
if (!bResult) //如果调用失败
{
// If WaitCommEvent() returns FALSE, process the last error to determin
// the reason..
switch (dwError = GetLastError()) // GetLastError检查错误类型
{
case ERROR_IO_PENDING: //如果错误码是EROR_IO_PENDING(#define ERROR_IO_PENDING 997),表示操作转到后台运行。
{
// This is a normal return value if there are no bytes
// to read at the port.
// Do nothing and continue
break;
}
case 87:
{
// Under Windows NT, this value is returned for some reason.
// I have not investigated why, but it is also a valid reply
// Also do nothing and continue.
break;
}
default:
{
// All other error codes indicate a serious error has
// occured. Process this error.
port->ProcessErrorMessage("WaitCommEvent()");//处理错误消息
break;
}
}
}
else//如果调用成功
{
// If WaitCommEvent() returns TRUE, check to be sure there are
// actually bytes in the buffer to read.
//
// If you are reading more than one byte at a time from the buffer
// (which this program does not do) you will have the situation occur
// where the first byte to arrive will cause the WaitForMultipleObjects()
// function to stop waiting. The WaitForMultipleObjects() function
// resets the event handle in m_OverlappedStruct.hEvent to the non-signelead state
// as it returns.
//
// If in the time between the reset of this event and the call to
// ReadFile() more bytes arrive, the m_OverlappedStruct.hEvent handle will be set again
// to the signeled state. When the call to ReadFile() occurs, it will
// read all of the bytes from the buffer, and the program will
// loop back around to WaitCommEvent().
//
// At this point you will be in the situation where m_OverlappedStruct.hEvent is set,
// but there are no bytes available to read. If you proceed and call
// ReadFile(), it will return immediatly due to the async port setup, but
// GetOverlappedResults() will not return until the next character arrives.
//
// It is not desirable for the GetOverlappedResults() function to be in
// this state. The thread shutdown event (event 0) and the WriteFile()
// event (Event2) will not work if the thread is blocked by GetOverlappedResults().
//
// The solution to this is to check the buffer with a call to ClearCommError().
// This call will reset the event handle, and if there are no bytes to read
// we can loop back through WaitCommEvent() again, then proceed.
// If there are really bytes to read, do nothing and proceed.
//检测缓冲区,清楚错误
bResult = ClearCommError(port->m_hComm, &dwError, &comstat);
if (comstat.cbInQue == 0)// cbInQue是COMSTAT结构体(存放通信设备状态信息)中的一个参数,表示串行设备接收到的字节数。接收到的字节数为0,则继续等待事件触发,继续该循环
continue;
} // end if bResult
// Main wait function. This function will normally block the thread
// until one of nine events occur that require action
//等待事件发生,这是最主要的等待,等待的是m_hEventArray事件数组(第163 165 166行)中的三个事件的发生,如果一个都不发生,线程会被阻塞,一直在这里等待事件。
事件数组:
m_hEventArray[0] = m_hShutdownEvent;
m_hEventArray[1] = m_ov.hEvent;
m_hEventArray[2] = m_hWriteEvent;
Event代表数组中事件的序号 0即m_hShutdownEvent
Event = WaitForMultipleObjects(3, port->m_hEventArray, FALSE, INFINITE);
switch (Event)
{
case 0: // 0即m_hShutdownEvent 检测到杀死线程的事件
{
// Shutdown event. This is event zero so it will be
// the higest priority and be serviced first.
port->m_bThreadAlive = FALSE;
// Kill this thread. break is not needed, but makes me feel better.
AfxEndThread(100);//结束线程
break;
}
case 1: // read event
{ //获取与m_hComm关联的事件
GetCommMask(port->m_hComm, &CommEvent);// GetCommMask函数可以获取通信设备中当前正在发生的通信事件,以下EV_......... 均为串行通信事件
port是第282行CSerialPort *port = (CSerialPort*)pParam;定义的指针,m_pOwner头文件中定义CWnd* m_pOwner定义的指针
if (CommEvent & EV_CTS) //CTS信号发生变化。SendMessage中的消息(如WM_COMM_CTS_DETECTED等)在头文件中有定义
::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_CTS_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr);
if (CommEvent & EV_RXFLAG)//输入缓冲区收到事件字符
::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RXFLAG_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr);
if (CommEvent & EV_BREAK) // 检测到一个输入中断
::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_BREAK_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr);
if (CommEvent & EV_ERR) //发生行状态错误
::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_ERR_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr);
if (CommEvent & EV_RING) //检测到振铃信号
::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RING_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr);
if (CommEvent & EV_RXCHAR) //输入缓冲区接收到新字符,其实这是检测的最主要的事件
// Receive character event from port.
ReceiveChar(port, comstat);//若接收到新字符 则接收字符
break;
}
case 2: // write event
{
// Write character event from port
WriteChar(port);//这个函数是写不是发送 而后面的WriteToPort是将字符发送出去
break;
}
} // end switch
} // close forever loop
return 0;
}//监视线程结束
//以下三个函数是控制监视线程的开始 恢复 停止
BOOL CSerialPort::StartMonitoring()// 开始监视端口,这里调用的正式上面的线程函数
{
if (!(m_Thread = AfxBeginThread(CommThread, this)))// AfxBeginThread函数创建工作者线程,其第一个函数是线程入口函数 即上面的监视线程函数CommThread
return FALSE;
TRACE("Thread started\n");
return TRUE;
}
BOOL CSerialPort::RestartMonitoring()// 线程恢复
{
TRACE("Thread resumed\n");
m_Thread->ResumeThread(); //线程挂起后 用ResumeThread将线程恢复
return TRUE;
}
BOOL CSerialPort::StopMonitoring()//停止线程(只是挂起 , 还可以恢复的,并不是杀死)
{
TRACE("Thread suspended\n");
m_Thread->SuspendThread(); // 用SuspendThread将线程挂起
return TRUE;
}
//处理错误消息函数
void CSerialPort::ProcessErrorMessage(char* ErrorText)
{
char *Temp = new char[200];
LPVOID lpMsgBuf;
//将错误信息的错误代号装换成字符信息,并打印到 lpMsgBuf中
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf,
0,
NULL
);
sprintf(Temp, "WARNING: %s Failed with the following error: \n%s\nPort: %d\n", (char*)ErrorText, lpMsgBuf, m_nPortNr);
MessageBox(NULL, Temp, "Application Error", MB_ICONSTOP); //这个函数在VS下要改变成_T("Application Error")
LocalFree(lpMsgBuf);
delete[] Temp;
}
void CSerialPort::WriteChar(CSerialPort* port) //端口操作函数,写字符
{
BOOL bWrite = TRUE;
BOOL bResult = TRUE;
DWORD BytesSent = 0;
ResetEvent(port->m_hWriteEvent); //先将写事件对象设置成无信号状态
EnterCriticalSection(&port->m_csCommunicationSync); // Gain ownership of the critical section进入临界区
if (bWrite)
{
port->m_ov.Offset = 0; // Initailize variables
port->m_ov.OffsetHigh = 0;
// Clear buffer
PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT); //清除缓冲区
//调用写文件函数,向端口写数据
bResult = WriteFile(port->m_hComm, // Handle to COMM Port
port->m_szWriteBuffer, // Pointer to message
strlen((char*)port->m_szWriteBuffer),
&BytesSent, // Where to store the number of bytes sent
&port->m_ov); // Overlapped structure
// deal with any error codes
if (!bResult) //如果WriteFile调用失败
{
DWORD dwError = GetLastError(); //查询错误类型
switch (dwError)
{
case ERROR_IO_PENDING: //ERROR_IO_PENDING(#define ERROR_IO_PENDING 997),表示操作转到后台运行
{
// continue to GetOverlappedResults()
BytesSent = 0;
bWrite = FALSE; //置成FALSE
break; //若跳出 执行548行
}
default:
{
// all other error codes
port->ProcessErrorMessage("WriteFile()");
}
}
}
else
{
LeaveCriticalSection(&port->m_csCommunicationSync); //离开临界区
}
} // end if(bWrite)
if (!bWrite)
{
bWrite = TRUE;
// GetOverlappedResults()是异步IO操作结果获取函数 可以得到异步IO操作结果,第一个参数为句柄 第二个参数是 异步IO操作启动是指定的OVERLAPPED结构 第三个参数是 指向一个32为变量,该变量值为一个读写操作实际传输的字节数 第四个参数为若TRUE则函数要等到异步IO操作完成后才返回
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
&port->m_ov, // Overlapped structure
&BytesSent, // Stores number of bytes sent
TRUE); // Wait flag
LeaveCriticalSection(&port->m_csCommunicationSync);
if (!bResult) // deal with the error code 这个bResult 是bResult = GetOverlappedResult
{
port->ProcessErrorMessage("GetOverlappedResults() in WriteFile()");
}
} // end if (!bWrite)
// Verify that the data size send equals what we tried to send
if (BytesSent != strlen((char*)port->m_szWriteBuffer)) //VS中要改为if(BytesSent!= port->m_nWriteSize)
{
TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d\n", BytesSent, strlen((char*)port->m_szWriteBuffer));
//VS中要改为
TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d\n", BytesSent, port->m_nWriteSize);
}
}
// Character received. Inform the owner
//接收数据
void CSerialPort::ReceiveChar(CSerialPort* port, COMSTAT comstat)
{
BOOL bRead = TRUE;
BOOL bResult = TRUE;
DWORD dwError = 0;
DWORD BytesRead = 0;
unsigned char RXBuff;
for (;;)
{
// Gain ownership of the comm port critical section.
// This process guarantees no other part of this program
// is using the port object.
//这就是线程同步了,不会有多个线程接收数据,那样就乱套了。
EnterCriticalSection(&port->m_csCommunicationSync); //进入临界区 保证线程同步
// ClearCommError() will update the COMSTAT structure and
// clear any other errors.
//读缓冲区
bResult = ClearCommError(port->m_hComm, &dwError, &comstat); //清除错误
LeaveCriticalSection(&port->m_csCommunicationSync); //离开临界区
// start forever loop. I use this type of loop because I
// do not know at runtime how many loops this will have to
// run. My solution is to start a forever loop and to
// break out of it when I have processed all of the
// data available. Be careful with this approach and
// be sure your loop will exit.
// My reasons for this are not as clear in this sample
// as it is in my production code, but I have found this
// solutiion to be the most efficient way to do this.
if (comstat.cbInQue == 0) //缓冲区输入字符为零 即没受到字符
{
// break out when all bytes have been read
break;
}
EnterCriticalSection(&port->m_csCommunicationSync);
if (bRead)
{
bResult = ReadFile(port->m_hComm, // Handle to COMM port
&RXBuff, // RX Buffer Pointer
1, // Read one byte
&BytesRead, // Stores number of bytes read
&port->m_ov); // pointer to the m_ov structure
// deal with the error code
if (!bResult) //若调用失败
{
switch (dwError = GetLastError())
{
case ERROR_IO_PENDING:
{
// asynchronous i/o is still in progress
// Proceed on to GetOverlappedResults();
bRead = FALSE;
break;
}
default:
{
// Another error has occured. Process this error.
port->ProcessErrorMessage("ReadFile()");
break;
}
}
}
else
{
// ReadFile() returned complete. It is not necessary to call GetOverlappedResults()
bRead = TRUE;
}
} // close if (bRead)
if (!bRead)
{
bRead = TRUE;
//获取异步IO操作结果
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
&port->m_ov, // Overlapped structure
&BytesRead, // Stores number of bytes read
TRUE); // Wait flag
// deal with the error code
if (!bResult)
{
port->ProcessErrorMessage("GetOverlappedResults() in ReadFile()");
}
} // close if (!bRead)
LeaveCriticalSection(&port->m_csCommunicationSync);
// notify parent that a byte was received
::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_RXCHAR, (WPARAM) RXBuff, (LPARAM) port->m_nPortNr);
} // end forever loop
}
//向写缓冲区写数据,这里是发送,触发写事件
void CSerialPort::WriteToPort(char* string)
{
assert(m_hComm != 0);
memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer)); //清零
strcpy(m_szWriteBuffer, string);
// set event for write
SetEvent(m_hWriteEvent);
}
//返回设备控制表,这是一个结构
DCB CSerialPort::GetDCB()
{
return m_dcb;
}
// 返回通讯事件
DWORD CSerialPort::GetCommEvents()
{
return m_dwCommEvents;
}
//返回写缓冲区大小
DWORD CSerialPort::GetWriteBufferSize()
{
return m_nWriteBufferSize;
}