图像处理之距离变换

图像处理之距离变换

概述

距离变换是二值图像处理与操作中常用手段,在骨架提取,图像窄化中常有应用。距离

变换的结果是得到一张与输入图像类似的灰度图像,但是灰度值只出现在前景区域。并

且越远离背景边缘的像素灰度值越大。

基本思想

根据度量距离的方法不同,距离变换有几种不同的方法,假设像素点p1(x1, y1), 

p2(x2, y2)计算距离的方法常见的有:

1.      欧几里德距离,Distance =

2.      曼哈顿距离(City Block Distance),公式如下:Distance = |x2-x1|+|y2-y1|

3.      象棋格距离(Chessboard Distance),公式如下:Distance = max(|x2-x1|,|y2-y1|)

一旦距离度量公式选择,就可以在二值图像的距离变换中使用。一个最常见的距离变换

算法就是通过连续的腐蚀操作来实现,腐蚀操作的停止条件是所有前景像素都被完全

腐蚀。这样根据腐蚀的先后顺序,我们就得到各个前景像素点到前景中心骨架像素点的

距离。根据各个像素点的距离值,设置为不同的灰度值。这样就完成了二值图像的距离

变换。

注意点:

腐蚀操作结构体的选取会影响距离变换的效果,例子使用3*3的矩阵完成。有很多快速

的距离变换算法,感兴趣的可以自己研究。

运行结果:


关键代码解析:

初始化二值图像,读取像素,获取前景边缘像素与背景边缘像素

	public DistanceTransform(float scaleValue, float offsetValue, BufferedImage src) 	{ 		this.scaleValue = scaleValue; 		this.offsetValue = offsetValue; 		this.inputImage = src; 		this.width = src.getWidth(); 		this.height = src.getHeight();         int[] inPixels = new int[width*height];         getRGB( src, 0, 0, width, height, inPixels );         int index = 0;         pixels2D = new int[height][width]; // row, column         greyLevel = new int[height][width];         for(int row=0; row < height; row++)         {         	for(int col=0; col<width; col++)          	{         		index = row * width + col;         		int grayValue = (inPixels[index] >> 16) & 0xff;         		pixels2D[row][col] = grayValue;         		greyLevel[row][col] = 0;         	}         }                  generateForegroundEdge();         generateBackgroundEdgeFromForegroundEdge();          	}
现实距离变换的代码如下:

@Override public BufferedImage filter(BufferedImage src, BufferedImage dest) { 	 	// calculate the distance here!! 	int index = 1;     while (foregroundEdgePixels.size() > 0) {     	distanceSingleIteration(index);         ++index;     }          // loop the each pixel and assign the color value according to distance value 	for (int row = 0; row < inputImage.getHeight(); row++) { 	      for (int col = 0; col < inputImage.getWidth(); col++) { 	    	  if(greyLevel[row][col] > 0) { 		    	  int colorValue = (int)Math.round(greyLevel[row][col] * scaleValue + offsetValue); 		    	  colorValue = colorValue > 255 ? 255 : ((colorValue < 0) ? 0 : colorValue); 		    	  this.pixels2D[row][col] = colorValue; 	    	  } 	    	   	      } 	} 	 	// build the result pixel data at here !!!     if ( dest == null )         dest = createCompatibleDestImage(inputImage, null );          index = 0;     int[] outPixels = new int[width*height];     for(int row=0; row<height; row++) {     	int ta = 0, tr = 0, tg = 0, tb = 0;     	for(int col=0; col<width; col++) {     		if(row == 75 && col > 60) {     			System.out.println("ddddd");     		}     		index = row * width + col;     		tr = tg = tb = this.pixels2D[row][col];     		ta = 255;     		outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;     	}     }     setRGB( dest, 0, 0, width, height, outPixels ); 	return dest; }
生成前景边缘像素与背景边缘像素的代码如下:

  private void generateForegroundEdge()   {     foregroundEdgePixels.clear();      for (int row = 0; row < height; row++)       for (int col = 0; col < width; col++)         if (this.pixels2D[row][col] == foreground) {           Point localPoint = new Point(col, row);           for (int k = -1; k < 2; ++k) // 3*3 matrix         	  for (int l = -1; l < 2; ++l) {               if ((localPoint.x + l < 0) || (localPoint.x + l >= this.width) || (localPoint.y + k < 0) || (localPoint.y + k >= this.height) ||                  (this.pixels2D[(localPoint.y + k)][(localPoint.x + l)] != background) || (this.foregroundEdgePixels.contains(localPoint)))                 continue;               this.foregroundEdgePixels.add(localPoint);             }         }   }      private void generateBackgroundEdgeFromForegroundEdge()   {     this.backgroundEdgePixels.clear();      Iterator<Point> localIterator = this.foregroundEdgePixels.iterator();     while (localIterator.hasNext()) {       Point localPoint1 = new Point((Point)localIterator.next());       for (int i = -1; i < 2; ++i)         for (int j = -1; j < 2; ++j)           if ((localPoint1.x + j >= 0) && (localPoint1.x + j < this.width) && (localPoint1.y + i >= 0) && (localPoint1.y + i < this.height)) {             Point localPoint2 = new Point(localPoint1.x + j, localPoint1.y + i);             if (this.pixels2D[localPoint2.y][localPoint2.x] == background)               this.backgroundEdgePixels.add(localPoint2);           }     }   }

你可能感兴趣的:(图像处理之距离变换)