图像处理之图像梯度效果

图像处理之图像梯度效果


基本思想:

利用X方向与Y方向分别实现一阶微分,求取振幅,实现图像梯度效果。关于如何计算图像

一阶微分参见这里:http://blog.csdn.net/jia20003/article/details/7562092

使用的两种微分算子分别为Prewitt与Sobel,其中Soble在X, Y两个方向算子分别为:


Prewitt在X, Y方向上梯度算子分别为:


二:程序思路及实现

梯度滤镜提供了两个参数:

�C 方向,用来要决定图像完成X方向梯度计算, Y方向梯度计算,或者是振幅计算

�C 算子类型,用来决定是使用sobel算子或者是prewitt算子。

计算振幅的公式可以参见以前《图像处理之一阶微分应用》的文章


 三:运行效果

原图像如下:


基于Prewitt与sobel算子的XY方向振幅效果如下:



该滤镜的源代码如下:

package com.process.blur.study;  import java.awt.image.BufferedImage; /**  *   * @author gloomy-fish  * @date 2012-06-11  *   * prewitt operator   * X-direction  * -1, 0, 1  * -1, 0, 1  * -1, 0, 1  *   * Y-direction  * -1, -1, -1  *  0,  0,  0  *  1,  1,  1  *    * sobel operator  * X-direction  * -1, 0, 1  * -2, 0, 2  * -1, 0, 1  *   * Y-direction  * -1, -2, -1  *  0,  0,  0  *  1,  2,  1  *  */ public class GradientFilter extends AbstractBufferedImageOp {  	// prewitt operator 	public final static int[][] PREWITT_X = new int[][]{{-1, 0, 1}, {-1, 0, 1}, {-1, 0, 1}}; 	public final static int[][] PREWITT_Y = new int[][]{{-1, -1, -1}, {0,  0,  0}, {1,  1,  1}}; 	 	// sobel operator 	public final static int[][] SOBEL_X = new int[][]{{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}}; 	public final static int[][] SOBEL_Y = new int[][]{{-1, -2, -1}, {0,  0,  0}, {1,  2,  1}}; 	 	// direction parameter 	public final static int X_DIRECTION = 0; 	public final static int Y_DIRECTION = 2; 	public final static int XY_DIRECTION = 4; 	private int direction; 	private boolean isSobel; 	 	public GradientFilter() { 		direction = XY_DIRECTION; 		isSobel = true; 	} 	 	public void setSoble(boolean sobel) { 		this.isSobel = sobel; 	}  	public int getDirection() { 		return direction; 	}  	public void setDirection(int direction) { 		this.direction = direction; 	} 	 	@Override 	public BufferedImage filter(BufferedImage src, BufferedImage dest) { 		int width = src.getWidth();         int height = src.getHeight();          if (dest == null )         	dest = createCompatibleDestImage( src, null );          int[] inPixels = new int[width*height];         int[] outPixels = new int[width*height];         getRGB( src, 0, 0, width, height, inPixels );         int index = 0, index2 = 0;         double xred = 0, xgreen = 0, xblue = 0;         double yred = 0, ygreen = 0, yblue = 0;         int newRow, newCol;         for(int row=0; row<height; row++) {         	int ta = 255, tr = 0, tg = 0, tb = 0;         	for(int col=0; col<width; col++) {         		index = row * width + col;         		for(int subrow = -1; subrow <= 1; subrow++) {         			for(int subcol = -1; subcol <= 1; subcol++) {         				newRow = row + subrow;         				newCol = col + subcol;         				if(newRow < 0 || newRow >= height) {         					newRow = row;         				}         				if(newCol < 0 || newCol >= width) {         					newCol = col;         				}         				index2 = newRow * width + newCol;                         tr = (inPixels[index2] >> 16) & 0xff;                         tg = (inPixels[index2] >> 8) & 0xff;                         tb = inPixels[index2] & 0xff;                                                  if(isSobel) {                         	xred += (SOBEL_X[subrow + 1][subcol + 1] * tr);                         	xgreen +=(SOBEL_X[subrow + 1][subcol + 1] * tg);                         	xblue +=(SOBEL_X[subrow + 1][subcol + 1] * tb);                         	                         	yred += (SOBEL_Y[subrow + 1][subcol + 1] * tr);                         	ygreen +=(SOBEL_Y[subrow + 1][subcol + 1] * tg);                         	yblue +=(SOBEL_Y[subrow + 1][subcol + 1] * tb);                         } else {                         	xred += (PREWITT_X[subrow + 1][subcol + 1] * tr);                         	xgreen +=(PREWITT_X[subrow + 1][subcol + 1] * tg);                         	xblue +=(PREWITT_X[subrow + 1][subcol + 1] * tb);                         	                         	yred += (PREWITT_Y[subrow + 1][subcol + 1] * tr);                         	ygreen +=(PREWITT_Y[subrow + 1][subcol + 1] * tg);                         	yblue +=(PREWITT_Y[subrow + 1][subcol + 1] * tb);                         }         			}         		}         		                 double mred = Math.sqrt(xred * xred + yred * yred);                 double mgreen = Math.sqrt(xgreen * xgreen + ygreen * ygreen);                 double mblue = Math.sqrt(xblue * xblue + yblue * yblue);                 if(XY_DIRECTION == direction)                  {                 	outPixels[index] = (ta << 24) | (clamp((int)mred) << 16) | (clamp((int)mgreen) << 8) | clamp((int)mblue);                 }                  else if(X_DIRECTION == direction)                 {                 	outPixels[index] = (ta << 24) | (clamp((int)yred) << 16) | (clamp((int)ygreen) << 8) | clamp((int)yblue);                 }                  else if(Y_DIRECTION == direction)                  {                 	outPixels[index] = (ta << 24) | (clamp((int)xred) << 16) | (clamp((int)xgreen) << 8) | clamp((int)xblue);                 }                  else                  {                 	// as default, always XY gradient                 	outPixels[index] = (ta << 24) | (clamp((int)mred) << 16) | (clamp((int)mgreen) << 8) | clamp((int)mblue);                 }                                  // cleanup for next loop                 newRow = newCol = 0;                 xred = xgreen = xblue = 0;                 yred = ygreen = yblue = 0;                          	}         }         setRGB(dest, 0, 0, width, height, outPixels );         return dest; 	} 	 	public static int clamp(int value) { 		return value < 0 ? 0 : (value > 255 ? 255 : value); 	}  } 
转载文章请务必注明出自本博客!

你可能感兴趣的:(Date,filter,null,Class,图像处理)