linux 内核的early_param

#define __setup_param(str, unique_id, fn, early)\
static const char __setup_str_##unique_id[] __initconst\
__aligned(1) = str; \
static struct obs_kernel_param __setup_##unique_id\
__used __section(.init.setup)\
__attribute__((aligned((sizeof(long)))))\
= { __setup_str_##unique_id, fn, early }
#define __setup(str, fn)\
__setup_param(str, fn, fn, 0)
/* NOTE: fn is as per module_param, not __setup!  Emits warning if fn
 * returns non-zero. */
#define early_param(str, fn)\
__setup_param(str, fn, fn, 1)
early_param("debug", nf_debug_setup);


分析:

early_param宏可以展开为:_setup_param("debug",nf_debug_setup,debug_setup,1);

继而可以展开为:

static const char _setup_debug_nf_debug_setup[]     _initconst     _aligned(1)="debug";

static struct obs_kernel_param     _setup_nf_debug_setup     _used    _section(.init.setup)    __attribute_ (aligned((sizeof(long))))={_setup_str_nf_debug_setup,nf_debug_setup,1}

struct obs_kernel_param {  
    const char *str;  
    int (*setup_func)(char *);  
    int early;  
};

通过_section宏,编译器会将_setup_nf_debug_setup放置在.init.setup中。

arch/x86/kernel/vmlinux.lds中,__setup_start指向了.init.setup开头的地址,而__setup_end指向了.init.setup的结束地址。

start_kernel->parse_early_param->parse_early_options

 

void __init parse_early_param(void)
{
static __initdata int done = 0;
static __initdata char tmp_cmdline[COMMAND_LINE_SIZE];
if (done)
return;
/* All fall through to do_early_param. */
strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE);//复制启动命令行数据
parse_early_options(tmp_cmdline);
done = 1;
}


void __init parse_early_options(char *cmdline)
{
parse_args("early options", cmdline, NULL, 0, 0, 0, do_early_param);
}


/* Args looks like "foo=bar,bar2 baz=fuz wiz". */
int parse_args(const char *doing,//“early options”
       char *args,//命令行参数
       const struct kernel_param *params,//NULL
       unsigned num,//0
       s16 min_level,//0
       s16 max_level,//0
       int (*unknown)(char *param, char *val, const char *doing)//do_early_param)
{
char *param, *val;
/* Chew leading spaces */
args = skip_spaces(args);
if (*args)
pr_debug("doing %s, parsing ARGS: '%s'\n", doing, args);
while (*args) {
int ret;
int irq_was_disabled;
args = next_arg(args, &param, &val);
irq_was_disabled = irqs_disabled();
ret = parse_one(param, val, doing, params, num,
min_level, max_level, unknown);
if (irq_was_disabled && !irqs_disabled())
pr_warn("%s: option '%s' enabled irq's!\n",
doing, param);
switch (ret) {
case -ENOENT:
pr_err("%s: Unknown parameter `%s'\n", doing, param);
return ret;
case -ENOSPC:
pr_err("%s: `%s' too large for parameter `%s'\n",
       doing, val ?: "", param);
return ret;
case 0:
break;
default:
pr_err("%s: `%s' invalid for parameter `%s'\n",
       doing, val ?: "", param);
return ret;
}
}
/* All parsed OK. */
return 0;
}


//命令行参数的解析parse_one 
static int parse_one(char *param,char *val,const struct kernel_param *params,unsigned num_params,int (*handle_unknown)(char *param, char *val))  
{  
    unsigned int i;  
    int err;  
  
    /* Find parameter */  
    for (i = 0; i < num_params; i++) {   //num_params=0  
        if (parameq(param, params[i].name)) {  
            if (!val && params[i].ops->set != param_set_bool)  
                return -EINVAL;  
            DEBUGP("They are equal!  Calling %p\n",params[i].ops->set);  
            mutex_lock(&param_lock);  
            err = params[i].ops->set(val, &params[i]);  
            mutex_unlock(&param_lock);  
            return err;  
        }  
    }  
  
    if (handle_unknown) {   //若handle_unknown函数存在  
        DEBUGP("Unknown argument: calling %p\n", handle_unknown);  
        return handle_unknown(param, val);  //则调用handle_unknown函数,参数为param,val  
    }  
  
    DEBUGP("Unknown argument `%s'\n", param);  
    return -ENOENT;  
}

回溯回去handle_unknow函数就是do_early_param 

static int __init do_early_param(char *param, char *val)  
{  
    const struct obs_kernel_param *p;  
  
    for (p = __setup_start; p < __setup_end; p++) {  
        if ((p->early && strcmp(param, p->str) == 0) || (strcmp(param, "console") == 0 && strcmp(p->str, "earlycon") == 0)) {  
            if (p->setup_func(val) != 0)  
                printk(KERN_WARNING"Malformed early option '%s'\n", param);  
        }  
    }  
    /* We accept everything at this stage. */  
    return 0;  
}

 

do_early_param函数从__setup_start遍历到__setup_end段,

判断参数,进入if函数体里面

if (p->setup_func(val) != 0)这句调用了对应setup_func或early_param成员的函数,并将val作为其参数,val其实便是__setup(str, fn)或__early_param中的str

其实就是调用了fn(str)

这里的第一条if会刷选掉__setup定义的情况(除了console和earlycon参数的),因为__setup定义的obs_kernel_param结构体p->early=0

__setup定义的fn会在start_kernel->parse_args("Booting kernel", static_command_line, __start___param,__stop___param - __start___param,&unknown_bootoption);

unknown_bootoption->obsolete_checksetup函数给调用

看start_kernel中调用顺序 

parse_early_param();  
parse_args("Booting kernel", static_command_line, __start___param, __stop___param - __start___param,&unknown_bootoption);

可见先调用__early_param定义的解析参数函数及__setup定义的(console及earlycon)的参数解析函数

接着再调用__setup定义的其他解析参数函数.


你可能感兴趣的:(linux,内核的early_param)