- 华为面试题及答案——机器学习(二)
麦当当MDD
题目挖掘机器学习人工智能数据库开发数据库大数据
21.如何评价分类模型的优劣?(1)模型性能指标准确率(Accuracy):定义:正确分类的样本数与总样本数之比。适用:当各类样本的数量相对均衡时。精确率(Precision):定义:预测为正类的样本中实际为正类的比例。适用:当关注假阳性错误的成本较高时(例如垃圾邮件检测)。召回率(Recall):定义:实际为正类的样本中被正确预测为正类的比例。适用:当关注假阴性错误的成本较高时(例如疾病检测)。
- 大模型学习笔记-基于《Deep Dive into LLMs like ChatGPT》
XiyouLinux_Kangyijie
学习笔记chatgpt
模型是什么从逻辑层面理解,模型类似于函数。给定模型一个输入,它会产生一个输出。例如,垃圾邮件识别器就是一种模型。当输入一封电子邮件时,它会输出该邮件是否为垃圾邮件的判断结果。天气预测同样是一个模型,输入历史天气数据,它会输出对明天天气情况的预测。这些都是模型的实例。当然,模型的输出存在一定的准确率,其结果可能与预期高度相符,也可能偏离较大。构建数据集对于大语言模型(LLM)的训练而言,首先需要构建
- 第二章:13.1 机器学习的迭代发展
望云山190
机器学习人工智能
目录机器学习模型开发流程构建电子邮件垃圾邮件分类器示例总结垃圾邮件分类示例构建垃圾邮件分类器机器学习模型开发流程确定系统架构:首先,需要决定机器学习系统的总体架构,这包括选择合适的模型、确定使用的数据集、可能还包括选择超参数等。实现和训练模型:根据上述决定,实现并训练一个模型。通常,第一次训练的模型不会立即达到预期的效果。诊断和调整:对模型进行诊断,查看算法的偏差、方差或进行错误分析。根据诊断结果
- 计算机网络--网络安全测试
黑客K-ing
网络安全网络协议信号处理信息与通信
问题1以下关于网络安全威胁发展的趋势的描述中错误的是___A_____。答案:A云计算可以有效地防止网络攻击发生B网络攻击、病毒与垃圾邮件是网络安全的三大公害C网络攻击开始演变成某些国家或利益集团重要的政治、军事工具D趋利性是当前网络攻击的主要特点问题2得10分,满分10分以下关于网络安全的三大公害的描述中错误的是_____C___。答案:A网络攻击、病毒与垃圾邮件攻击方式相互融合,变种不断出现B
- 零基础入门机器学习 -- 第四章分类问题与逻辑回归
山海青风
#机器学习机器学习分类逻辑回归python人工智能
4.1分类vs回归在机器学习中,任务通常分为两大类:回归(Regression):用于预测连续数值,如房价、温度、工资等。例如:预测明天的气温(28.5°C)。预测一辆二手车的价格(30,000元)。分类(Classification):用于预测离散类别,如垃圾邮件vs正常邮件。例如:判断一封邮件是否是垃圾邮件(“垃圾邮件”or“正常邮件”)。预测一个贷款申请是否会被批准(“批准”or“拒绝”)。
- 让 LLM 来评判 | 选择 LLM 评估模型
人工智能llm
基础概念这是让LLM来评判系列文章的第一篇,敬请关注系列文章:基础概念选择LLM评估模型设计你自己的评估prompt评估你的评估结果奖励模型相关内容技巧与提示什么是评估模型?评估模型(Judgemodels)是一种用于评估其他神经网络的神经网络。大多数情况下它们用来评估生成文本的质量。评估模型涵盖的范围很广,从小型的特定分类器(例如“垃圾邮件分类器”)到大型的LLM,或大而广、或小而专。使用LLM
- 让 LLM 来评判 | 基础概念
llm人工智能
基础概念这是让LLM来评判系列文章的第一篇,敬请关注系列文章:基础概念选择LLM评估模型设计你自己的评估prompt评估你的评估结果奖励模型相关内容技巧与提示什么是评估模型?评估模型(Judgemodels)是一种用于评估其他神经网络的神经网络。大多数情况下它们用来评估生成文本的质量。评估模型涵盖的范围很广,从小型的特定分类器(例如“垃圾邮件分类器”)到大型的LLM,或大而广、或小而专。使用LLM
- 自动评估基准 | 基础概念
人工智能
基础概念这是自动评估基准系列文章的第一篇,敬请关注系列文章:基础概念设计你的自动评估任务一些评估测试集技巧与提示注:本文内容与我写的通用评估博客存在部分重叠什么是自动评估基准?自动化基准测试通常按照以下方式工作:你希望了解你的模型在某些方面的表现。这些“某些方面”可以是一个明确定义的具体任务,例如“我的模型在垃圾邮件分类中的表现如何?”,也可以是一个更抽象和通用的能力,例如“我的模型的数学能力有多
- AI分支知识之机器学习,深度学习,强化学习的关系
王钧石的技术博客
大模型人工智能机器学习深度学习
机器学习,深度学习,强化学习的关系这一篇文章我们来探讨下AI领域中机器学习(ML)、深度学习(DL)和强化学习(RL)的关系。一、机器学习(ML):从数据中找到模式核心思想:给定大量数据,计算机从数据中总结规律,形成一个数学模型,然后用这个模型去处理新的数据。例子:判断一封邮件是垃圾邮件还是正常邮件传统编程方式:人类自己写规则,比如:如果邮件标题包含“中奖”、“免费”、“转账”→这是垃圾邮件否则这
- 从零开始构建一个大语言模型-第六章第一节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理机器学习python
第六章目录6.1不同类型的微调6.2准备数据集6.3创建数据加载器6.4用预训练权重初始化模型6.5添加分类头6.6计算分类损失和准确率6.7在有监督数据上微调模型6.8将大语言模型用作垃圾邮件分类器本章内容涵盖介绍不同的大语言模型微调方法为文本分类准备数据集修改预训练大语言模型以进行微调使用微调后的大语言模型对新数据进行分类到目前为止,我们已经编写了大语言模型(LLM)的架构,对其进行了预训练,
- 机器学习算法分类
和风化雨
人工智能机器学习算法分类
机器学习算法可以根据不同的标准进行分类,常见的分类方式包括根据学习方式和算法功能进行分类。以下是详细的分类介绍:1.根据学习方式进行分类1.1监督学习(SupervisedLearning)监督学习是指在训练过程中,输入数据(特征)和输出数据(标签)都是已知的。算法通过学习输入和输出之间的映射关系,来预测新数据的输出。应用场景:分类问题(如垃圾邮件检测)、回归问题(如房价预测)。常见算法:逻辑回归
- 机器学习算法-逻辑回归
Larkin88
机器学习算法逻辑回归
机器学习算法-逻辑回归1.K-近邻算法(略)2.线性回归(略)3.逻辑回归3.1逻辑回归介绍逻辑回归(LogisticRegression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的练习。由于算法的简单和高效,在实际中应用非常广泛。1、逻辑回归的应用场景广告点击率是否为垃圾邮件是否患病金融诈骗虚假账号2逻辑回归的原理2.1输入$$h(w)=w_
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 我们为什么要用大语言模型来迭代数据安全能力?
大模型.
语言模型人工智能自然语言处理架构深度学习大数据大模型
在当今科技飞速发展的时代,大语言模型无疑是最炙手可热的话题之一。从OpenAI的GPT系列到谷歌的BERT,这些拥有海量参数的模型宛如智能巨人,正重塑着自然语言处理(NLP)的格局。你或许好奇,大语言模型究竟为何如此备受瞩目?这得从自然语言处理领域的核心任务——文本分类说起。文本分类,就像是给五花八门的文本信息贴上合适的“标签”,无论是判断一封邮件是正常邮件还是垃圾邮件,分析社交媒体上的评论是积极
- 《Apple Store 上架过包》Guideline 4.3(a) - Design - Spam 解决 4.3 垃圾邮件
Hello 啊 树哥!
AppStore上架javajavascript服务器applestore
---------------每周更新,感谢您的关注、收藏和点赞,需要帮助上架过包的朋友可以后台私信,会有专员解决。-----------------------目录邮件描述拒审原因解决办法邮件描述邮件原文ReviewEnvironmentSubmissionID:99102skw-a1sk-as8f-abba-632ad32w2s560Reviewdate:January09,2025Versi
- Python AI教程之二十一:监督学习之支持向量机(SVM)算法
潜洋
人工智能Python中级支持向量机算法机器学习python
支持向量机(SVM)算法支持向量机(SVM)是一种功能强大的机器学习算法,广泛用于线性和非线性分类以及回归和异常值检测任务。SVM具有很强的适应性,适用于各种应用,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM特别有效,因为它们专注于寻找目标特征中不同类别之间的最大分离超平面,从而使其对二分类和多分类都具有鲁棒性。在本大纲中,我们将探讨支持向量机(SVM)
- 决策树基础概论
Hello.Reader
算法算法决策树
1.概述在机器学习领域,决策树(DecisionTree)是一种高度直观且广泛应用的算法。它通过一系列简单的是/否问题,将复杂的决策过程分解为一棵树状结构,使得分类或回归问题的解决过程直观明了。决策树的最大特点在于可解释性强,每个决策节点都代表对特定特征的判断,最终根据这些判断得出结论。决策树适用于多种任务,例如:垃圾邮件分类、病症诊断、股票价格预测等。不仅如此,它还可以处理连续变量和离散变量,并
- SEO垃圾邮件攻击是什么
wys2338
服务器服务器
SEO垃圾邮件攻击是指黑客将恶意链接注入您网站上的各个页面,或在您的网站上创建包含垃圾邮件内容的新页面。此外,黑客会在您的页面上留下指向恶意网站的重定向。因此,当查看者单击其中一个恶意重定向链接时,他们会被带到可能感染了恶意软件的完全不同的网站。有时,这些网站也沉迷于网络钓鱼。网络犯罪分子还广泛使用机器人在您的网站上留下垃圾评论。搜索引擎优化垃圾邮件攻击通常发生,因为有恶意的人试图增加他们网站的流
- Discourse 如何修改用户自己的密码
HoneyMoose
Discourse修改用户的密码是如何进行修改的?你可用登录系统的后台,然后进入属性页面。需要注意的是,Discourse的用户密码修改,需要使用电子邮件。你需要让系统发送重置你密码的链接,你需要注意系统的邮件地址不在你的垃圾邮件中。然后单击上面的按钮,然后单击链接发送重置密码的链接。随后在你的电子邮件中,按照发送过来的链接后重新输入你的新密码就可以了。https://www.ossez.com/
- 【Geeksend邮件营销】为什么在发送邮件前要进行邮箱预热?
Geeksend邮件营销
用户运营
发邮件前进行邮箱预热是一个重要的步骤,主要原因有以下几点:提高邮件发送成功率:许多邮件服务提供商(例如Gmail、Outlook等)使用复杂的算法来识别和过滤垃圾邮件或来自不可靠发件人的邮件。而邮箱预热不仅是一个短期的过程,更是一种长期的策略。通过逐步增加邮件发送量和活跃度,你可以建立一个稳定且可靠的邮件发送环境,为未来的邮件营销活动奠定坚实的基础建立发件人信誉:邮箱预热有助于逐步建立你的发件人信
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 深度学习100问13:什么是二分类问题
不断持续学习ing
人工智能机器学习自然语言处理
嘿,你知道二分类问题不?这就像是一个“超级裁判”,要把东西分成两大类。一、定义及举例想象一下,生活中有很多时候我们得决定一个东西到底属于哪一边。就像判断一封邮件,是“垃圾邮件”呢,还是“正常邮件”;或者看看一个病人,是“得了某种病”呢,还是“没得病”。二、解决方法要解决二分类问题呀,我们可以找来一些“魔法工具”,也就是机器学习算法。像逻辑回归啦、支持向量机啦、决策树啦等等。这些算法就像聪明的小助手
- 机器学习 之 决策树与随机森林的实现
SEVEN-YEARS
机器学习决策树随机森林
引言随着互联网技术的发展,垃圾邮件过滤已成为一项重要的任务。机器学习技术,尤其是决策树和随机森林,在解决这类问题时表现出色。本文将介绍随机森林的基本概念,并通过一个具体的案例——筛选垃圾电子邮件——来展示随机森林的实际应用。随机森林简介随机森林是一种基于决策树的集成学习方法,它通过构建多个决策树并综合它们的预测结果来提高准确性和防止过拟合。随机森林的工作原理主要包括以下几个步骤:自助采样:从原始数
- 什么是reCAPTCHA?在哪里可以找到reCAPTCHA示例演示?
ForRunner123
人工智能深度学习机器学习
在当今的数字领域中,保护网站免受垃圾邮件、恶意活动和自动化机器人的侵害至关重要。由谷歌开发的reCAPTCHA已成为一种广泛实施的安全措施,用于区分人类用户和机器人。本文全面介绍了reCAPTCHA、其目的,并包含了一个示例reCAPTCHA演示,以更好地理解其工作原理。什么是reCAPTCHA?reCAPTCHA是一种先进的安全技术,用于验证在网站上执行的操作是否由真实的人类用户或自动化机器人完
- 【机器学习】初学者经典案例(随记)
听忆.
机器学习人工智能数据挖掘深度学习语言模型
边走、边悟迟早会好一、概念机器学习是一种利用数据来改进模型性能的计算方法,属于人工智能的一个分支。它旨在让计算机系统通过经验自动改进,而不需要明确编程。类型监督学习:使用带标签的数据进行训练,包括分类(如垃圾邮件检测)和回归(如房价预测)。无监督学习:使用不带标签的数据进行训练,包括聚类(如客户细分)和降维(如主成分分析)。强化学习:通过与环境的交互学习策略,以最大化累积奖励(如AlphaGo)。
- vos3000系统,如何防护ddos数据攻击?
wx_jiuyun383838
tel18554512818vos3000web安全安全架构系统安全
大家可能都有vos3000服务器被ddos攻击的烦恼,不仅浪费时间还会影响业务。那么什么是ddos攻击呢?分布式拒绝服务(DDoS)攻击是一种通过大量请求拥塞目标服务器的网络资源,从而阻止合法用户访问的攻击方式。为了有效防御DDoS攻击,可以采取以下策略:服务器高防ip,这个成本太高不考虑。尽早发现攻击:及时觉察是防御的第一步。例如,当网站流量突然激增或收到大量垃圾邮件时,可
- 【Python机器学习】NLP的部分实际应用
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python大数据
自然语言处理在现实中非常多的应用,下表是其中的一些例子:应用示例1示例2示例3搜索web文档自动补全编辑拼写语法风格对话聊天机器人助手行程安排写作索引用语索引目录电子邮件垃圾邮件过滤分类优先级排序文本挖掘摘要知识提取医学诊断法律法律断案先例搜索传票分类新闻事件检索真相核查标题排字归属剽窃检测文字取证风格指导情感分析团队士气监控产品评论分类客户关怀行为预测金融选举预测营销创作电影脚本诗歌歌词如果在索
- 【探索AI】四:AI(人工智能)自然语言处理(NLP)
美少女战士1@
学习笔记AI人工智能自然语言处理
自然语言处理(NLP)的概念自然语言处理(NaturalLanguageProcessing,NLP)是一门交叉学科,涉及人工智能、计算机科学和语言学等领域,旨在让计算机能够理解、分析、生成和处理人类语言。NLP技术致力于使计算机能够与人类以自然语言进行交流,从而实现更加智能、便捷的人机交互。在自然语言处理中,常见的任务包括但不限于:文本分类:将文本按照预定义的类别进行分类,如垃圾邮件分类、新闻分
- facebook群控如何做?静态住宅ip代理在多账号运营重的作用
Snow跨境日记
代理IPfacebookip
在进行Facebook群控时,ip地址的管理是非常重要的,因为Facebook通常会检测ip地址的使用情况,如果发现有异常的使用行为,比如从同一个ip地址频繁进行登录、发布内容或者在短时间内进行大量的活动等等,就会视为垃圾邮件或者恶意行为,导致账户被禁用或者限制。因此,在进行Facebook群控时,使用大量的静态住宅ip代理是非常必要的。本文将介绍静态住宅ip代理的好处以及如何使用ip代理池来进一
- 有哪几种行为会导致服务器被入侵
MarkHD
服务器运维
导致服务器被入侵的行为有很多种,以下是一些常见的行为:系统漏洞:服务器操作系统或软件存在漏洞,攻击者可以通过利用这些漏洞获取系统权限,从而入侵服务器。弱口令:服务器的账号密码过于简单或者未及时更新,攻击者可以通过暴力破解等手段获取系统权限,进而入侵服务器。不良的安全配置:如未启用防火墙、未及时更新安全补丁等,都可能导致服务器成为黑客的目标。恶意软件:服务器可能通过垃圾邮件或者恶意软件受到攻击,攻击
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。