haproxy的配置参数

   简介:

HAProxy提供高可用性、负载均衡以及基于TCP和HTTP应用的代 理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案。HAProxy特别适用于那些负载特大的web站点,这些站点通常又需要会话保持或七层处理。HAProxy运行在当前的硬件上,完全可以支持数以万计的并发连接。并且它的运行模式使得它可以很简单安全的整合进您当前的架构中, 同时可以保护你的web服务器不被暴露到网络上。

HAProxy实现了一种事件驱动单一进程模型,此模型支持非常大的并发连接数。多进程或多线程模型受内存限制 、系统调度器限制以及无处不在的锁限制,很少能处理数千并发连接。事件驱动模型因为在有更好的资源和时间管理的用户端(User-Space) 实现所有这些任务,所以没有这些问题。此模型的弊端是,在多核系统上,这些程序通常扩展性较差。这就是为什么他们必须进行优化以 使每个CPU时间片(Cycle)做更多的工作, HAProxy提供高可用性、负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案。HAProxy特别适用于那些负载特大的web站点,这些站点通常又需要会话保持或七层处理。HAProxy运行在时下的硬件上,完全可以支持数以万计的并发连接。并且它的运行模式使得它可以很简单安全的整合进您当前的架构中, 同时可以保护你的web服务器不被暴露到网络上。

    HAProxy实现了一种事件驱动、单一进程模型,此模型支持非常大的并发连接数。多进程或多线程模型受内存限制 、系统调度器限制以及无处不在的锁限制,很少能处理数千并发连接。事件驱动模型因为在有更好的资源和时间管理的用户端(User-Space) 实现所有这些任务,所以没有这些问题。此模型的弊端是,在多核系统上,这些程序通常扩展性较差。这就是为什么他们必须进行优化以 使每个CPU时间片(Cycle)做更多的工作。

    HAProxy是免费、极速且可靠的用于为TCP和基于HTTP应用程序提供高可用、负载均衡和代理服务的解决方案,尤其适用于高负载且需要持久连接或7层处理机制的web站点。

  

2.HAProxy性能详解

1).基于单进程、事件驱动模型显著降低了上下文切换的开销及内存占用。

2).事件检查器(event checker)允许其在高并发连接中对任何连接的任何事件实现即时探测。

3).在任何可用的情况下,单缓冲(single buffering)机制能以不复制任何数据的方式完成读写操作,这会节约大量的CPU时钟周期及内存带宽;

4).借助于Linux 2.6 (>= 2.6.27.19)上的splice()系统调用,HAProxy可以实现零复制转发(Zero-copyforwarding),在现在的新版本的Linux OS中还可以实现零复制启动(zero-starting)

5).MRU内存分配器在固定大小的内存池中可实现即时内存分配,这能够减少创建一个会话的时长;

6).树型存储:弹性二叉树,实现了接近以O(1)的低开销来保持计时器命令、保持运行队列命令及管理轮询及最少连接队列;

7).优化的HTTP首部分析:优化的首部分析功能避免了在HTTP首部分析过程中重读任何内存区域;

8).支持客户端侧的长连接(client-side keep-alive)并且支持TCP加速(TCP speedups)

9).基于源的粘性(source-based stickiness)及更详细的健康状态检测(more verbose health checks)


3.HAPROXY的主要特性

1)、HAProxy是支持虚拟主机的。

2)、能够补充Nginx的一些缺点比如Session的保持,Cookie的引导等工作

3)、支持url检测后端的服务器出问题的检测会有很好的帮助。

4)、它跟LVS一样,本身仅仅就只是一款负载均衡软件;单纯从效率上来讲HAProxy更会比Nginx有更出色的负载均衡速度,在并发处理上也是优于Nginx的。

5)、HAProxy可以对Mysql读进行负载均衡,对后端的MySQL节点进行检测和负载均衡,不过在后端的MySQL slaves数量超过10台时性能不如LVS,所以我向大家推荐LVS+Keepalived。

6)、HAProxy的算法现在也越来越多了,具体有如下8种:

①roundrobin,表示简单的轮询,这个是负载均衡基本都具备的;

②static-rr,表示根据权重,建议关注;

③leastconn,表示最少连接者先处理,建议关注;

④source,表示根据请求源IP,这个跟Nginx的IP_hash机制类似,我们用其作为解决session问题的一种方法,建议关注;

⑤ri,表示根据请求的URI;

⑥rl_param,表示根据请求的URl参数'balance url_param' requires an URL parameter name;

⑦hdr(name),表示根据HTTP请求头来锁定每一次HTTP请求;

⑧rdp-cookie(name),表示根据据cookie(name)来锁定并哈希每一次TCP请求


4.简单安装和示例配置

安装:在CentOS6的系统镜像中默认已经集成了HAProxy,版本为1.4.22。在这里我们使用yum装:

[root@HAProxy ~]# yum install haproxy #安装

[root@HAProxy ~]# rpm -ql haproxy #查看生成的配置文件

/etc/haproxy

/etc/haproxy/haproxy.cfg

/etc/logrotate.d/haproxy

/etc/rc.d/init.d/haproxy

/usr/bin/halog

/usr/sbin/haproxy

/usr/share/doc/haproxy-1.4.22

......

  配置参数如下:

2.4 全局配置


“global”配置中的参数为进程级别的参数,且通常与其运行的OS相关。


 * 进程管理及安全相关的参数

   - chroot <jail dir>:修改haproxy的工作目录至指定的目录并在放弃权限之前执行chroot()操作,可以提升haproxy的安全级别,不过需要注意的是要确保指定的目录为空目录且任何用户均不能有写权限;

   - daemon:让haproxy以守护进程的方式工作于后台,其等同于“-D”选项的功能,当然,也可以在命令行中以“-db”选项将其禁用;

   - gid <number>:以指定的GID运行haproxy,建议使用专用于运行haproxy的GID,以免因权限问题带来风险;

   - group <group name>:同gid,不过指定的组名;

   - log  <address> <facility> [max level [min level]]:定义全局的syslog服务器,最多可以定义两个;

   - log-send-hostname [<string>]:在syslog信息的首部添加当前主机名,可以为“string”指定的名称,也可以缺省使用当前主机名;

   - nbproc <number>:指定启动的haproxy进程的个数,只能用于守护进程模式的haproxy;默认只启动一个进程,鉴于调试困难等多方面的原因,一般只在单进程仅能打开少数文件描述符的场景中才使用多进程模式;

   - pidfile:

   - uid:以指定的UID身份运行haproxy进程;

   - ulimit-n:设定每进程所能够打开的最大文件描述符数目,默认情况下其会自动进行计算,因此不推荐修改此选项;

   - user:同uid,但使用的是用户名;

   - stats:

   - node:定义当前节点的名称,用于HA场景中多haproxy进程共享同一个IP地址时;

   - description:当前实例的描述信息;


 * 性能调整相关的参数

   - maxconn <number>:设定每个haproxy进程所接受的最大并发连接数,其等同于命令行选项“-n”;“ulimit -n”自动计算的结果正是参照此参数设定的;

   - maxpipes <number>:haproxy使用pipe完成基于内核的tcp报文重组,此选项则用于设定每进程所允许使用的最大pipe个数;每个pipe会打开两个文件描述符,因此,“ulimit -n”自动计算时会根据需要调大此值;默认为maxconn/4,其通常会显得过大;

   - noepoll:在Linux系统上禁用epoll机制;

   - nokqueue:在BSE系统上禁用kqueue机制;

   - nopoll:禁用poll机制;

   - nosepoll:在Linux禁用启发式epoll机制;

   - nosplice:禁止在Linux套接字上使用内核tcp重组,这会导致更多的recv/send系统调用;不过,在Linux 2.6.25-28系列的内核上,tcp重组功能有bug存在;

   - spread-checks <0..50, in percent>:在haproxy后端有着众多服务器的场景中,在精确的时间间隔后统一对众服务器进行健康状况检查可能会带来意外问题;此选项用于将其检查的时间间隔长度上增加或减小一定的随机时长;

   - tune.bufsize <number>:设定buffer的大小,同样的内存条件小,较小的值可以让haproxy有能力接受更多的并发连接,较大的值可以让某些应用程序使用较大的cookie信息;默认为16384,其可以在编译时修改,不过强烈建议使用默认值;

   - tune.chksize <number>:设定检查缓冲区的大小,单位为字节;更大的值有助于在较大的页面中完成基于字符串或模式的文本查找,但也会占用更多的系统资源;不建议修改;

   - tune.maxaccept <number>:设定haproxy进程内核调度运行时一次性可以接受的连接的个数,较大的值可以带来较大的吞吐率,默认在单进程模式下为100,多进程模式下为8,设定为-1可以禁止此限制;一般不建议修改;

   - tune.maxpollevents  <number>:设定一次系统调用可以处理的事件最大数,默认值取决于OS;其值小于200时可节约带宽,但会略微增大网络延迟,而大于200时会降低延迟,但会稍稍增加网络带宽的占用量;

   - tune.maxrewrite <number>:设定为首部重写或追加而预留的缓冲空间,建议使用1024左右的大小;在需要使用更大的空间时,haproxy会自动增加其值;

   - tune.rcvbuf.client <number>:

   - tune.rcvbuf.server <number>:设定内核套接字中服务端或客户端接收缓冲的大小,单位为字节;强烈推荐使用默认值;

   - tune.sndbuf.client:

   - tune.sndbuf.server:


 * Debug相关的参数

   - debug

   - quiet


2.5 代理


代理相关的配置可以如下配置段中。


 - defaults <name>

 - frontend <name>

 - backend  <name>

 - listen   <name>


 “defaults”段用于为所有其它配置段提供默认参数,这配置默认配置参数可由下一个“defaults”所重新设定。


 “frontend”段用于定义一系列监听的套接字,这些套接字可接受客户端请求并与之建立连接。


 “backend”段用于定义一系列“后端”服务器,代理将会将对应客户端的请求转发至这些服务器。


 “listen”段通过关联“前端”和“后端”定义了一个完整的代理,通常只对TCP流量有用。


 所有代理的名称只能使用大写字母、小写字母、数字、-(中线)、_(下划线)、.(点号)和:(冒号)。此外,ACL名称会区分字母大小写。

balance <algorithm> [ <arguments> ]

balance url_param <param> [check_post [<max_wait>]]


定义负载均衡算法,可用于“defaults”、“listen”和“backend”。<algorithm>用于在负载均衡场景中挑选一个server,其仅应用于持久信息不可用的条件下或需要将一个连接重新派发至另一个服务器时。支持的算法有:


  roundrobin:基于权重进行轮叫,在服务器的处理时间保持均匀分布时,这是最平衡、最公平的算法。此算法是动态的,这表示其权重可以在运行时进行调整,不过,在设计上,每个后端服务器仅能最多接受4128个连接;

  static-rr:基于权重进行轮叫,与roundrobin类似,但是为静态方法,在运行时调整其服务器权重不会生效;不过,其在后端服务器连接数上没有限制;

  leastconn:新的连接请求被派发至具有最少连接数目的后端服务器;在有着较长时间会话的场景中推荐使用此算法,如LDAP、SQL等,其并不太适用于较短会话的应用层协议,如HTTP;此算法是动态的,可以在运行时调整其权重;

  source:将请求的源地址进行hash运算,并由后端服务器的权重总数相除后派发至某匹配的服务器;这可以使得同一个客户端IP的请求始终被派发至某特定的服务器;不过,当服务器权重总数发生变化时,如某服务器宕机或添加了新的服务器,许多客户端的请求可能会被派发至与此前请求不同的服务器;常用于负载均衡无cookie功能的基于TCP的协议;其默认为静态,不过也可以使用hash-type修改此特性;

  uri:对URI的左半部分(“问题”标记之前的部分)或整个URI进行hash运算,并由服务器的总权重相除后派发至某匹配的服务器;这可以使得对同一个URI的请求总是被派发至某特定的服务器,除非服务器的权重总数发生了变化;此算法常用于代理缓存或反病毒代理以提高缓存的命中率;需要注意的是,此算法仅应用于HTTP后端服务器场景;其默认为静态算法,不过也可以使用hash-type修改此特性;

  url_param:通过<argument>为URL指定的参数在每个HTTP GET请求中将会被检索;如果找到了指定的参数且其通过等于号“=”被赋予了一个值,那么此值将被执行hash运算并被服务器的总权重相除后派发至某匹配的服务器;此算法可以通过追踪请求中的用户标识进而确保同一个用户ID的请求将被送往同一个特定的服务器,除非服务器的总权重发生了变化;如果某请求中没有出现指定的参数或其没有有效值,则使用轮叫算法对相应请求进行调度;此算法默认为静态的,不过其也可以使用hash-type修改此特性;

  hdr(<name>):对于每个HTTP请求,通过<name>指定的HTTP首部将会被检索;如果相应的首部没有出现或其没有有效值,则使用轮叫算法对相应请求进行调度;其有一个可选选项“use_domain_only”,可在指定检索类似Host类的首部时仅计算域名部分(比如通过www.magedu.com来说,仅计算magedu字符串的hash值)以降低hash算法的运算量;此算法默认为静态的,不过其也可以使用hash-type修改此特性;

  rdp-cookie

  rdp-cookie(name):


3.2 bind


bind [<address>]:<port_range> [, ...]

bind [<address>]:<port_range> [, ...] interface <interface>


此指令仅能用于frontend和listen区段,用于定义一个或几个监听的套接字。


<address>:可选选项,其可以为主机名、IPv4地址、IPv6地址或*;省略此选项、将其指定为*或0.0.0.0时,将监听当前系统的所有IPv4地址;

<port_range>:可以是一个特定的TCP端口,也可是一个端口范围(如5005-5010),代理服务器将通过指定的端口来接收客户端请求;需要注意的是,每组监听的套接字<address:port>在同一个实例上只能使用一次,而且小于1024的端口需要有特定权限的用户才能使用,这可能需要通过uid参数来定义;

<interface>:指定物理接口的名称,仅能在Linux系统上使用;其不能使用接口别名,而仅能使用物理接口名称,而且只有管理有权限指定绑定的物理接口;


3.3 mode


mode { tcp|http|health }


设定实例的运行模式或协议。当实现内容交换时,前端和后端必须工作于同一种模式(一般说来都是HTTP模式),否则将无法启动实例。


tcp:实例运行于纯TCP模式,在客户端和服务器端之间将建立一个全双工的连接,且不会对7层报文做任何类型的检查;此为默认模式,通常用于SSL、SSH、SMTP等应用;

http:实例运行于HTTP模式,客户端请求在转发至后端服务器之前将被深度分析,所有不与RFC格式兼容的请求都会被拒绝;

health:实例工作于health模式,其对入站请求仅响应“OK”信息并关闭连接,且不会记录任何日志信息;此模式将用于响应外部组件的健康状态检查请求;目前业讲,此模式已经废弃,因为tcp或http模式中的monitor关键字可完成类似功能;


3.4 hash-type


hash-type <method>


定义用于将hash码映射至后端服务器的方法;其不能用于frontend区段;可用方法有map-based和consistent,在大多数场景下推荐使用默认的map-based方法。


map-based:hash表是一个包含了所有在线服务器的静态数组。其hash值将会非常平滑,会将权重考虑在列,但其为静态方法,对在线服务器的权重进行调整将不会生效,这意味着其不支持慢速启动。此外,挑选服务器是根据其在数组中的位置进行的,因此,当一台服务器宕机或添加了一台新的服务器时,大多数连接将会被重新派发至一个与此前不同的服务器上,对于缓存服务器的工作场景来说,此方法不甚适用。

consistent:hash表是一个由各服务器填充而成的树状结构;基于hash键在hash树中查找相应的服务器时,最近的服务器将被选中。此方法是动态的,支持在运行时修改服务器权重,因此兼容慢速启动的特性。添加一个新的服务器时,仅会对一小部分请求产生影响,因此,尤其适用于后端服务器为cache的场景。不过,此算法不甚平滑,派发至各服务器的请求未必能达到理想的均衡效果,因此,可能需要不时的调整服务器的权重以获得更好的均衡性。


3.5 log


log global

log <address> <facility> [<level> [<minlevel>]]


为每个实例启用事件和流量日志,因此可用于所有区段。每个实例最多可以指定两个log参数,不过,如果使用了“log global”且"global"段已经定了两个log参数时,多余了log参数将被忽略。


global:当前实例的日志系统参数同"global"段中的定义时,将使用此格式;每个实例仅能定义一次“log global”语句,且其没有任何额外参数;

<address>:定义日志发往的位置,其格式之一可以为<IPv4_address:PORT>,其中的port为UDP协议端口,默认为514;格式之二为Unix套接字文件路径,但需要留心chroot应用及用户的读写权限;

<facility>:可以为syslog系统的标准facility之一;

<level>:定义日志级别,即输出信息过滤器,默认为所有信息;指定级别时,所有等于或高于此级别的日志信息将会被发送;


3.6 maxconn


maxconn <conns>


设定一个前端的最大并发连接数,因此,其不能用于backend区段。对于大型站点来说,可以尽可能提高此值以便让haproxy管理连接队列,从而避免无法应答用户请求。当然,此最大值不能超出“global”段中的定义。此外,需要留心的是,haproxy会为每个连接维持两个缓冲,每个缓冲的大小为8KB,再加上其它的数据,每个连接将大约占用17KB的RAM空间。这意味着经过适当优化后,有着1GB的可用RAM空间时将能维护40000-50000并发连接。


如果为<conns>指定了一个过大值,极端场景下,其最终占据的空间可能会超出当前主机的可用内存,这可能会带来意想不到的结果;因此,将其设定了一个可接受值方为明智决定。其默认为2000。


3.7 default_backend


default_backend <backend>


在没有匹配的"use_backend"规则时为实例指定使用的默认后端,因此,其不可应用于backend区段。在"frontend"和"backend"之间进行内容交换时,通常使用"use-backend"定义其匹配规则;而没有被规则匹配到的请求将由此参数指定的后端接收。


<backend>:指定使用的后端的名称;

简单配置:

[root@HAProxy ~]# vim /etc/haproxy/haproxy.cfg

global                                                #全局设置

log 127.0.0.1 local2                                  #定义日志的记录的级别和服务器地址

chroot /var/lib/haproxy                               #限定相关用户的访问目录

pidfile /var/run/haproxy.pid                          #pid文件的设置

maxconn 4000                                          #最大连接数的设置

user haproxy                                          #定义运行服务的用户

group haproxy                                         #属组

daemon                                                #设置服务后台运行

stats socket /var/lib/haproxy/stats                   #打开状态检测socket

listen stats                                          #关联前端和后端定义一个定义一个完整的代理

mode http                                             #设置代理协议

bind *:1080                                           #绑定相应的端口

stats enable                                          #开启状态检测

stats hide-version                                    #隐藏代理服务器版本

stats uri /stats                                      #设置资源详细记录

stats realm haproxy_stats                             #设置登录认证提示信息

stats auth admin:admin                                #设置登录用户和密码

frontend main *:8080                                  #定义监听套接字

acl url_static path_end -i .jpg .gif .png .css .js    #acl匹配静态资源

use_backend static if url_static                      #如果匹配静态资源使用static

default_backend app                                   #否则使用默认的后端服务器

backend static                                        #定义后端服务器的设置(匹配静态)

balance roundrobin                                    #使用动态的轮询调度算法

server static 192.168.21.4:80 check                   #设置代理的后端服务器地址

backend app                                           #定义匹配默认的后端服务器

balance roundrobin

server app1 192.168.21.1:80 check

server app2 192.168.21.2:80 check

  注意:当我们要启用log日志记录功能时,要打开开/etc/rsyslog.conf上的日志记录功能

      wKiom1QedS_wllMyAACUHABc5SY854.jpg

而且要打上日志保存位置:spacer.gifwKiom1QedfLzKQN7AAEMZ-_j2UI211.jpg

当我们打开第一个是就不需要在/etc/rsyslog.conf上输入local2 要保存的位置了

    例子:我们有两个server端,和一个haproxy端,定义server端是httpd的高可用:

        server1 172,。16.249.229

         server2:172.16.249.162

      wKiom1Qed-KQCUtrAAEBz_te048933.jpg

   

= listen  han *:80

   balance     roundrobin  

  server 172.16.249.229:80 check

  server 172.16.249.162:80 check


你可能感兴趣的:(haproxy,详解,配置参数)