1.查询的模糊匹配
尽量避免在一个复杂查询里面使用 LIKE '%parm1%'―― 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用.
解决办法:
其实只需要对该脚本略做改进,查询速度便会提高近百倍。改进方法如下:
a、修改前台程序――把查询条件的供应商名称一栏由原来的文本输入改为下拉列表,用户模糊输入供应商名称时,直接在前台就帮忙定位到具体的供应商,这样在调用后台程序时,这列就可以直接用等于来关联了。
b、直接修改后台――根据输入条件,先查出符合条件的供应商,并把相关记录保存在一个临时表里头,然后再用临时表去做复杂关联
2.索引问题
在做性能跟踪分析过程中,经常发现有不少后台程序的性能问题是因为缺少合适索引造成的,有些表甚至一个索引都没有。这种情况往往都是因为在设计表时,没去定义索引,而开发初期,由于表记录很少,索引创建与否,可能对性能没啥影响,开发人员因此也未多加重视。然一旦程序发布到生产环境,随着时间的推移,表记录越来越多
这时缺少索引,对性能的影响便会越来越大了。
这个问题需要数据库设计人员和开发人员共同关注
法则:不要在建立的索引的数据列上进行下列操作:
◆避免对索引字段进行计算操作
◆避免在索引字段上使用not,<>,!=
◆避免在索引列上使用IS NULL和IS NOT NULL
◆避免在索引列上出现数据类型转换
◆避免在索引字段上使用函数
◆避免建立索引的列中使用空值。
3.复杂操作
部分UPDATE、SELECT 语句 写得很复杂(经常嵌套多级子查询)――可以考虑适当拆成几步,先生成一些临时数据表,再进行关联操作
4.update
同一个表的修改在一个过程里出现好几十次,如:
update table1 set col1=... where col2=...; update table1 set col1=... where col2=... ...... |
象这类脚本其实可以很简单就整合在一个UPDATE语句来完成(前些时候在协助xxx项目做性能问题分析时就发现存在这种情况)
5.在可以使用UNION ALL的语句里,使用了UNION
UNION 因为会将各查询子集的记录做比较,故比起UNION ALL ,通常速度都会慢上许多。一般来说,如果使用UNION ALL能满足要求的话,务必使用UNION ALL。还有一种情况大家可能会忽略掉,就是虽然要求几个子集的并集需要过滤掉重复记录,但由于脚本的特殊性,不可能存在重复记录,这时便应该使用UNION ALL,如xx模块的某个查询程序就曾经存在这种情况,见,由于语句的特殊性,在这个脚本中几个子集的记录绝对不可能重复,故可以改用UNION ALL)
6.在WHERE 语句中,尽量避免对索引字段进行计算操作
这个常识相信绝大部分开发人员都应该知道,但仍有不少人这么使用,我想其中一个最主要的原因可能是为了编写写简单而损害了性能,那就不可取了
9月份在对XX系统做性能分析时发现,有大量的后台程序存在类似用法,如:
...... where trunc(create_date)=trunc(:date1) |
虽然已对create_date 字段建了索引,但由于加了TRUNC,使得索引无法用上。此处正确的写法应该是
where create_date>=trunc(:date1) and create_date |
或者是
where create_date between trunc(:date1) and trunc(:date1)+1-1/(24*60*60) |
注意:因between 的范围是个闭区间(greater than or equal to low value and less than or equal to high value.),
故严格意义上应该再减去一个趋于0的小数,这里暂且设置成减去1秒(1/(24*60*60)),如果不要求这么精确的话,可以略掉这步。
7.对Where 语句的法则
7.1 避免在WHERE子句中使用in,not in,or 或者having。
可以使用 exist 和not exist代替 in和not in。
可以使用表链接代替 exist。Having可以用where代替,如果无法代替可以分两步处理。
例子
SELECT * FROM ORDERS WHERE CUSTOMER_NAME NOT IN (SELECT CUSTOMER_NAME FROM CUSTOMER) |
优化
SELECT * FROM ORDERS WHERE CUSTOMER_NAME not exist (SELECT CUSTOMER_NAME FROM CUSTOMER) |
7.2 不要以字符格式声明数字,要以数字格式声明字符值。(日期同样)否则会使索引无效,产生全表扫描。
例子使用:
SELECT emp.ename, emp.job FROM emp WHERE emp.empno = 7369; 不要使用:SELECT emp.ename, emp.job FROM emp WHERE emp.empno = ‘7369’ |
7.3 使用“>=”替代“>”或 使用“<=”替代“<”
例如“某列<=8888”和“某列<8889”检索结果是一样的,但是效率并不是一样的。
不等于操作符是永远不会用到索引的,因此对他的处理只会产生全表扫描。
8.对Select语句的法则
在应用程序、包和过程中限制使用select * from table这种方式。看下面例子
使用SELECT empno,ename,category FROM emp WHERE empno = '7369‘ 而不要使用SELECT * FROM emp WHERE empno = '7369' |
9. 排序
避免使用耗费资源的操作,带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎 执行,耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序
10.临时表
慎重使用临时表可以极大的提高系统性能
避免 LEFT JOIN 和 NULL
当然,有很多时候您需要执行 LEFT JOIN 和使用 NULL 值。但是,它们并不适用于所有情况。改变 SQL 查询的构建方式可能会产生将一个花几分钟运行的报告缩短到只花几秒钟这样的天壤之别的效果。有时,必须在查询中调整数据的形态,使之适应应用程序所要求的显示方式。虽然 TABLE 数据类型会减少大量占用资源的情况,但在查询中还有许多区域可以进行优化。SQL 的一个有价值的常用功能是 LEFT JOIN。它可以用于检索第一个表中的所有行、第二个表中所有匹配的行、以及第二个表中与第一个表不匹配的所有行。例如,如果希望返回每个客户及其定单,使用 LEFT JOIN 则可以显示有定单和没有定单的客户。
此工具可能会被过度使用。LEFT JOIN 消耗的资源非常之多,因为它们包含与 NULL(不存在)数据匹配的数据。在某些情况下,这是不可避免的,但是代价可能非常高。LEFT JOIN 比 INNER JOIN 消耗资源更多,所以如果您可以重新编写查询以使得该查询不使用任何 LEFT JOIN,则会得到非常可观的回报(请参阅图 1 中的图)。
加快使用 LEFT JOIN 的查询速度的一项技术涉及创建一个 TABLE 数据类型,插入第一个表(LEFT JOIN 左侧的表)中的所有行,然后使用第二个表中的值更新 TABLE 数据类型。此技术是一个两步的过程,但与标准的 LEFT JOIN 相比,可以节省大量时间。一个很好的规则是尝试各种不同的技术并记录每种技术所需的时间,直到获得用于您的应用程序的执行性能最佳的查询。
测试查询的速度时,有必要多次运行此查询,然后取一个平均值。因为查询(或存储过程)可能会存储在 SQL Server 内存中的过程缓存中,因此第一次尝试耗费的时间好像稍长一些,而所有后续尝试耗费的时间都较短。另外,运行您的查询时,可能正在针对相同的表运行其他查询。当其他查询锁定和解锁这些表时,可能会导致您的查询要排队等待。例如,如果您进行查询时某人正在更新此表中的数据,则在更新提交时您的查询可能需要耗费更长时间来执行。
避免使用 LEFT JOIN 时速度降低的最简单方法是尽可能多地围绕它们设计数据库。例如,假设某一产品可能具有类别也可能没有类别。如果 Products 表存储了其类别的 ID,而没有用于某个特定产品的类别,则您可以在字段中存储 NULL 值。然后您必须执行 LEFT JOIN 来获取所有产品及其类别。您可以创建一个值为“No Category”的类别,从而指定外键关系不允许 NULL 值。通过执行上述操作,现在您就可以使用 INNER JOIN 检索所有产品及其类别了。虽然这看起来好像是一个带有多余数据的变通方法,但可能是一个很有价值的技术,因为它可以消除 SQL 批处理语句中消耗资源较多的 LEFT JOIN。在数据库中全部使用此概念可以为您节省大量的处理时间。请记住,对于您的用户而言,即使几秒钟的时间也非常重要,因为当您有许多用户正在访问同一个联机数据库应用程序时,这几秒钟实际上的意义会非常重大。