Generates Prime Numbers - the Sieve of Eratosthenes

/**
* This class Generates prime numbers up to a user specified
* maximum. The algorithm used is the Sieve of Eratosthenes.
* <p>
* Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --
* d. c. 194, Alexandria. The first man to calculate the
* circumference of the Earth. Also known for working on
* calendars with leap years and ran the library at Alexandria.
* <p>
* The algorithm is quite simple. Given an array of integers
* starting at 2. Cross out all multiples of 2. Find the next
* uncrossed integer, and cross out all of its multiples.
* Repeat untilyou have passed the square root of the maximum
* value.
*
* @author Alphonse
* @version 13 Feb 2002 atp
*/
import java.util.Arrays;

public class PrimeGenerator {
    private static boolean[] crossedOut;
    private static int[] result;

    public static int[] generatePrimes(int maxValue) {
        if (maxValue < 2)
            return new int[0];
        else {
            uncrossIntegersUpTo(maxValue);
            crossOutMultiples();
            putUncrossedIntegersIntoResult();
            return result;
        }
    }

    private static void uncrossIntegersUpTo(int maxValue) {
        crossedOut = new boolean[maxValue + 1];
        for (int i = 2; i < crossedOut.length; i++)
            crossedOut[i] = false;
    }

    private static void crossOutMultiples() {
        int limit = determineIterationLimit();
        for (int i = 2; i <= limit; i++)
            if (notCrossed(i))
                crossOutMultiplesOf(i);
    }

    private static int determineIterationLimit() {
        // Every multiple in the array has a prime factor that
        // is less than or equal to the root of the array size,
        // so we don't have to cross out multiples of numbers
        // larger than that root.
        double iterationLimit = Math.sqrt(crossedOut.length);
        return (int) iterationLimit;
    }

    private static void crossOutMultiplesOf(int i) {
        for (int multiple = 2 * i; multiple < crossedOut.length; multiple += i)
            crossedOut[multiple] = true;
    }

    private static boolean notCrossed(int i) {
        return crossedOut[i] == false;
    }

    private static void putUncrossedIntegersIntoResult() {
        result = new int[numberOfUncrossedIntegers()];
        for (int j = 0, i = 2; i < crossedOut.length; i++)
            if (notCrossed(i))
                result[j++] = i;
    }

    private static int numberOfUncrossedIntegers() {
        int count = 0;
        for (int i = 2; i < crossedOut.length; i++)
            if (notCrossed(i))
                count++;
        return count;
    }
    
    public static void main(String[] args) {
        int[] a = generatePrimes(10);
        System.out.println(Arrays.toString(a));
    }
    
}

 

the program is to generate all the primes from 2 to the specified maximum.

 

what's about the Sieve of Eratosthenes?

 

The algorithm is quite simple. Given an array of integers starting at 2. Cross out all multiples of 2. Find the next uncrossed integer, and cross out all of its multiples. Repeat untilyou have passed the square root of the maximum value.

 

Every multiple in the array has a prime factor that is less than or equal to the root of the array size,
so we don't have to cross out multiples of numbers larger than that root.

 

multiple here means the number which is not a prime, it has a factor, and must have a prime factor which is less than or equal to its root.

 

素数,合数。

你可能感兴趣的:(C++,c,C#,J#,UP)