- Python实现机器学习项目教程:房价预测
向着开发进攻
pythonpython机器学习开发语言
Python实现机器学习小项目教程:房价预测案例机器学习(MachineLearning)是数据科学中的一项重要技术,它通过从数据中学习规律,进行预测和决策。对于初学者来说,通过实际的项目来学习机器学习的原理和实现方法,是非常有效的。本篇教程将通过Python实现一个简单的机器学习小项目——房价预测。我们将使用scikit-learn库来构建并训练一个线性回归模型,预测房价。项目背景假设我们拥有一
- 二手劳力士价格暴跌,跌幅比房价还高,昔日的保值神器,怎么一下子就跌了这么多?
日记成书
热门实事学习
二手劳力士价格暴跌的现象,是多重因素共同作用的结果,涉及市场供需失衡、品牌策略调整、经济环境变化以及消费观念转型等。以下从核心原因、市场影响和未来趋势三个维度展开分析:一、暴跌的核心原因供需失衡:稀缺性泡沫破裂劳力士曾通过严格控制年产量(过去十年约100万只/年)和配货规则维持稀缺性,但2022年增产至124万只后,专卖店提货周期从数年缩短至60天,直接刺破了“稀缺神话”。同时,劳力士推出官方认证
- 中国CRM变形记:论低价造势与商业逻辑的集体破产
刘小奇�多
sass
在中国SaaS行业的黄金十年里,有一家公司仅用几页PPT就铸造了一座空中楼阁。在这过程中,不仅产品定位可以随意切换,而且商业模式还能够在一夜之间“基因突变”,这其中的原因是创始人深谙“融资永动机”的终极奥义——只要故事够新、价格够低、“嗓门”够大,资本市场的掌声就不会停歇。这场荒诞的变形记,起源于一家名为“纷享逍客”的OA协同软件公司,在烧光数亿融资、被钉钉打的丢盔弃甲后,忽然撕掉旧皮囊,摇身变成
- 加州房价数据集加载出错:无法获取数据,HTTP Error : Forbidden
code_welike
http网络协议网络python
加州房价数据集加载出错:无法获取数据,HTTPError:Forbidden在使用Python的sklearn库中,我们可以很方便地获取一些常用的数据集。在加载加州房价数据集时,有时会遇到“HTTPError:Forbidden”的错误提示,导致无法获取数据。这个问题的出现可能是因为我们的IP被限制了。那么该如何解决这个问题呢?解决方案:1.更换IP地址:首先,我们应该排除IP被限制的可能性。可以
- 解决Python中加载sklearn加州房价数据集出错的问题
冰雪之境
pythonsklearn开发语言Python
解决Python中加载sklearn加州房价数据集出错的问题在使用Python的scikit-learn库进行机器学习任务时,我们经常需要加载各种数据集。其中,加州房价数据集是一个常用的示例数据集之一,用于回归问题的训练和测试。然而,有时在加载加州房价数据集时可能会遇到HTTP错误的问题,具体表现为"HTTPError:HTTPError:Forbidden"。本文将介绍如何解决这个问题,并提供相
- 【完整版解决方案】sklearn加州房价数据集出错 housing = fetch_california_housing() HTTPError: HTTP Error 403: Forbidden
getalong
sklearn人工智能数据仓库python
完整解决方案(一键复制)代码替换housing=fetch_california_housing()翻了几条解决方案要么不全,要么收费,烦死个人下面给出完整解决方案!!!1、下载数据集原始数据集:cal_housing.tgz2、放置数据集查找本地位置,执行代码后进入目标文件夹。fromsklearnimportdatasetsdata_home=datasets.get_data_home()放
- 机器学习-随机森林解析
Mr终游
机器学习机器学习随机森林人工智能
目录一、.随机森林的思想二、随机森林构建步骤1.自助采样2.特征随机选择3构建决策树4.集成预测三.随机森林的关键优势**(1)减少过拟合****(2)高效并行化****(3)特征重要性评估****(4)耐抗噪声**四.随机森林的优缺点优点缺点五.参数调优(以scikit-learn为例)波士顿房价预测一、.随机森林的思想1.通过组成多个弱学习器(决策树)形成一个学习器2.多样性增强:每颗决策树通
- 基于单片机的室外休闲智能座椅设计(论文+源码)
云山工作室
单片机嵌入式硬件毕业设计毕设
1系统总体设计本课题为基于单片机的室外休闲智能座椅的设计,其可以实现温湿度检测,座椅加热,自动照明,背靠调节等工作。整个系统架构如图2.1所示其中包括了按键模块,温湿度检测模块,显示模块,加热模块,照明模块,按摩模块,背靠调节模块等器件设备。其中,显示模块采用LCD1602液晶显示当前的状态信息;温湿度检测,采用DHT11传感器实现,加热和照明功能,采用继电器间接控制加热棒和LED灯来实现;按摩则
- 【大模型学习】第八章 深入理解机器学习技术细节
好多渔鱼好多
AI大模型机器学习AI大模型人工智能
目录引言一、监督学习(SupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:房价预测二、无监督学习(UnsupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:客户细分三、强化学习(ReinforcementLearning)1.定义与工作原理2.常见应用场景3.应用场景示例:游戏AI四、集成学习(EnsembleLearning)1.
- 搜广推校招面经二十八
Y1nhl
搜广推面经推荐算法求职招聘搜索引擎机器学习算法
蚂蚁推荐算法一、介绍损失函数、为什么分类和回归的损失函数不能共用损失函数的介绍见【搜广推校招面经十八】1.1.分类和回归损失函数不能共用的原因分类和回归任务的目标不同,因此它们的损失函数设计也存在本质区别:输出空间的不同回归任务:目标是预测一个连续值(如房价、温度等)。输出空间是连续的实数范围。分类任务:目标是预测离散的类别标签(如“猫”或“狗”)或者概率。输出空间通常是有限的类别集合。误差衡量方
- 自动驾驶平行仿真(基础课程一)
Yours monkey brother
自动驾驶人工智能机器学习
一、线性回归每当我们想预测一个数值时,就会弹出回归问题价值。常见示例包括预测价格(房屋、股票、等)、预测住院时间(对于住院患者)、预测需求(零售额)等等。并非每个预测问题是经典回归的一种。稍后,我们将引入分类问题,其目标是预测一组类别的成员资格。作为一个运行示例,假设我们希望估计房屋(以美元计)基于其面积(以平方英尺为单位)和年龄(以年)。要开发一个预测房价的模型,我们需要得到我们亲身体验数据,包
- 实战:基于Pandas的房价数据分析全流程深度解析(附高阶技巧与数学推导)(十二)
WHCIS
Pandaspandas数据分析python
一、项目深度解析框架1.1分析维度全景图数据加载元数据分析数据清洗特征工程多维分析模型准备自动化报告1.2高阶分析工具链数据清洗:Missingno高级可视化、Optuna自动超参优化特征工程:TsFresh时序特征生成、FeatureTools自动化特征衍生可视化:Plotly动态交互、Altair声明式语法报告:JupyterNotebook魔法命令、Voila仪表板二、数据加载的工程级优化2
- 计算机毕业设计springboot的旅游信息管理系统设计与实现hyrsf9【附源码+数据库+部署+LW】
苏苏酱 ゛计算机毕设源码程序
课程设计springboot旅游
本项目包含程序+源码+数据库+LW+调试部署环境,文末可获取一份本项目的java源码和数据库参考。系统的选题背景和意义选题背景:随着社会经济的发展和人们生活水平的提高,旅游业成为了人们休闲娱乐、增长知识、放松身心的重要方式之一。然而,传统的旅游信息管理方式存在着许多问题,如信息不透明、效率低下、服务质量难以保证等。因此,设计和实现一个高效、便捷的旅游信息管理系统具有重要的意义。意义:首先,旅游信息
- 蓝桥杯集训·每日一题2025 农夫约翰最喜欢的操作
GGKingV50
蓝桥杯职场和发展
又是农夫约翰的农场上寒冷而无聊的一天。为了打发时间,农夫约翰发明了一种关于在整数数组上进行操作的有趣的休闲活动。农夫约翰有一个包含N个非负整数的数组a和一个整数M。然后,农夫约翰会请贝茜给出一个整数x。在一次操作中,农夫约翰可以选择一个索引i,并对ai加1或减1。农夫约翰的无聊值是他必须执行的最小操作次数,以使得对于所有的1≤i≤N,ai−x均可被M整除。对于所有可能的x,输出农夫约翰的最小无聊值
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- (9/100)每日小游戏平台系列
github_czy
pythonjavascript游戏程序游戏引擎
项目地址位于:小游戏导航新增一个跳跃小方块!游戏简介跳跃小方块(JumpingSquare)是一款轻松有趣的休闲小游戏,考验玩家的反应速度和操作技巧。玩家需要控制一个蓝色小方块,通过点击屏幕或按下空格键进行跳跃,躲避从右侧不断出现的障碍物,挑战更高的生存时间。游戏规则开始游戏:点击“开始游戏”按钮,方块会出现在地面上。跳跃操作:点击屏幕或按空格键让方块跳跃。只能单次跳跃,必须落地后才能再次跳跃。躲
- (8/100)每日小游戏平台系列
github_czy
每日小游戏pythonflask游戏引擎游戏程序
项目地址位于:小游戏导航新增一个打地鼠游戏!打地鼠(Whack-a-Mole)是一款经典的休闲游戏,玩家需要点击随机出现的地鼠,以获取分数。游戏时间有限,玩家需要在规定时间内尽可能多地击中地鼠,获得更高的分数。游戏规则:开始游戏:点击“开始游戏”按钮,游戏将倒计时30秒。游戏目标:点击出现的地鼠,每击中一次得1分。错过地鼠:如果点击空洞时没有地鼠,会显示“Miss!”。游戏结束:当游戏时间结束后,
- DeepSeek预测2030年:全球 50% 的白领工作将由 AI Agent 辅助完成,金融、医疗等专业渗透率超 70%
未来AI编程
DeepSeek入门到精通人工智能金融
基于当前技术趋势、行业动态及搜索结果中的关键信息,对未来的发展进行多维度预测,涵盖人工智能、搜索行业、全球经济格局等领域:一、人工智能技术的革命性突破低成本高性能模型的普及DeepSeek-R1等国产大模型通过混合专家架构(MoE)和算法优化,以OpenAI1/70的训练成本实现同等性能,推动AI开发从“重训练”向“重推理”转型。这一模式将加速中小企业和新兴国家进入AI赛道,形成“算力平权”效应。
- 机器学习实战:从理论到实践
静默.\\
机器学习人工智能
随着人工智能技术的迅猛发展,机器学习作为其核心部分,已经广泛应用于各个领域。它不仅在科技公司中扮演着关键角色,在医疗、金融、零售等行业也展现了巨大的潜力。然而,对于许多初学者来说,如何将理论知识转化为实际操作是一个挑战。本文旨在通过一个具体的案例——预测房价,来介绍机器学习的基本流程和具体操作步骤。我们将使用Python编程语言及其相关的科学计算库,如NumPy、Pandas、Scikit-Lea
- 机器学习数学基础:37.偏相关分析
@心都
机器学习人工智能
偏相关分析教程一、偏相关分析是什么在很多复杂的系统中,比如地理系统,会有多个要素相互影响。偏相关分析就是在这样多要素构成的系统里,不考虑其他要素的干扰,专门去研究两个要素之间关系紧密程度的一种方法。用来衡量这种紧密程度的数值,叫做偏相关系数。举个简单例子,在研究一个地区的房价时,房价会受到很多因素影响,像地段、房屋面积、周边配套设施等。如果我们想知道单纯的房屋面积和房价之间的关系,就可以用偏相关分
- 解锁机器学习核心算法 | 线性回归:机器学习的基石
紫雾凌寒
AI炼金厂#机器学习算法算法机器学习线性回归人工智能深度学习aipython
在机器学习的众多算法中,线性回归宛如一块基石,看似质朴无华,却稳稳支撑起诸多复杂模型的架构。它是我们初涉机器学习领域时便会邂逅的算法之一,其原理与应用广泛渗透于各个领域。无论是预测房价走势、剖析股票市场波动,还是钻研生物医学数据、优化工业生产流程,线性回归皆能大显身手。本质上,线性回归是一种用于构建变量间线性关系的统计模型。它试图寻觅一条最佳拟合直线(或超平面),以使预测值与实际观测值之间的误差降
- 基于STM32设计的俄罗斯方块小游戏
鱼弦
单片机系统合集stm32嵌入式硬件单片机
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)基于STM32设计的俄罗斯方块小游戏1.介绍基于STM32设计的俄罗斯方块小游戏是一款利用STM32微控制器、LCD显示屏和按键实现的经典休闲游戏。该游戏具有
- QQ游戏百万人同时在线服务器架构实现
JsenLong
QQ游戏于前几日终于突破了百万人同时在线的关口,向着更为远大的目标迈进,这让其它众多传统的棋牌休闲游戏平台黯然失色,相比之下,联众似乎已经根本不是QQ的对手,因为QQ除了这100万的游戏在线人数外,它还拥有3亿多的注册量(当然很多是重复注册的)以及QQ聊天软件900万的同时在线率,我们已经可以预见未来由QQ构建起来的强大棋牌休闲游戏帝国。服务器程序,其可承受的同时连接数目是有理论峰值的,通过C++
- 零食行业研究系列报告
seed2016
大数据
零食行业板块投资探讨专题-拥抱极致性价比与下沉时代系列:从下游折扣业态看零食投资(盐津铺子002847/三只松鼠300783)2024-2025年零食坚果_干货商机指南报告零食行业深度报告(系列一):万亿零食赛道全图谱,品类、渠道与竞争零食饮料行业口味创新趋势洞察三只松鼠(300783)公司深度研究:深化供应链改革,“D%2bN”全渠道突围,零食龙头征程再起休闲零食行业深度报告:解码小零食的大单品
- 基于BS结构的旅游网站详细设计与具体代码实现
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1旅游业的蓬勃发展与信息化需求随着社会经济的快速发展和人民生活水平的不断提高,旅游业正经历着前所未有的蓬勃发展。越来越多的人选择旅游作为休闲娱乐、放松身心、开拓视野的方式。与此同时,旅游业的信息化需求也日益迫切。传统的旅游服务模式已无法满足现代旅游者对信息获取、行程安排、服务体验等方面的个性化需求。1.2B/S架构的优势与适用性为了更好地满足旅游业的信息化需求,基于B/S架构的旅游
- 解密上门按摩系统:高并发场景下如何保障服务稳定?
龙兵科技软件开发小江
微信小程序生活健康医疗按摩服务
在当今快节奏的生活中,上门按摩服务正逐渐崭露头角,成为备受欢迎的健康休闲选择。这一服务借助线上平台,打破了传统按摩店的时空限制,让人们在舒适的家中就能享受到专业的按摩服务。上门按摩服务的便捷性不言而喻。只需轻点手机,用户便能在众多按摩项目中自由挑选,无论是肩颈放松,还是全身SPA,都能轻松实现。同时,用户还拥有挑选技师的权利,通过查看技师的照片和小视频,选择自己心仪的服务人员。这种个性化的选择,极
- AI 百炼成神:线性回归,预测房价
github_czy
AI百炼成神:100个项目玩转人工智能python开发语言
我们开始第一个项目——线性回归:预测房价。这是一个经典的机器学习入门项目,可以帮助你理解如何使用线性回归模型来预测连续的数值。第一个项目:线性回归预测房价项目目标学习线性回归的基本概念。使用历史房价数据建立一个预测模型。理解如何评估模型的性能。项目步骤准备数据集为了演示线性回归,我们将使用一个常见的房价数据集:波士顿房价数据集(BostonHousingDataset)。这个数据集包含了多个特征(
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- 吴恩达-机器学习-多元线性回归模型代码
StrawBerryTreea
机器学习机器学习线性回归python吴恩达
吴恩达《机器学习》2022版第一节第二周多元线性回归房价预测简单实现以下以下共两个实验,都是通过调用sklearn函数,分别实现了一元线性回归和多元线性回归的房价预测。一、一元线性回归importnumpyasnpnp.set_printoptions(precision=2)fromsklearn.linear_modelimportLinearRegression#输入数据X_train=np
- Python随机森林算法详解与案例实现
闲人编程
python算法python随机森林数据分析人工智能
目录Python随机森林算法详解与案例实现1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1数据集介绍4.2代码实现4.3代码解释4.4运行结果5、回归案例:使用随机森林预测波士顿房价5.1数据集介绍5.2代码实现5.3代码解释5.4运行结果6、随机森林的优缺点7、改进方向8、应用场景9、总结Python随机森林算法详解与案例实现1、随机森林算法概述随
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_