- 2025 年江苏保安员职业资格考试经验分享
每天题库
学习考证题库安全考试
江苏保安行业发展成熟,2025年考试注重对考生综合素养的考查。报考条件常规,但对诚信记录有额外关注,如有不良信用记录可能影响报考资格。报名在江苏省各地级市公安局指定点进行,提交资料包括身份证、学历证、个人诚信报告(可通过中国人民银行征信系统获取)。理论考试结合江苏历史文化名城保护、经济开发区安保特点出题。例如在历史文化街区安保知识考查中,涉及文物保护相关法规。实操方面,对景区、工业园区等场景的安保
- 数学建模--图论与最短路径
不到w粉不改名
数学建模图论最短路径DijkstraFloyd算法Bellman-FordSPFA
目录图论与最短路径问题最短路径问题定义常用的最短路径算法Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法应用实例结论延伸如何在实际应用中优化Dijkstra算法以提高效率?数据结构优化:边的优化:并行计算:稀疏矩阵和向量运算:代码优化:Floyd算法在处理多源最短路径问题时的具体实现步骤是什么?Bellman-Ford算法如何检测并处理负权边的图中的负环?SPFA算法与B
- 一文搞懂 Dijkstra 算法:最短路径的经典之选(含 Java 代码详解)
某个默默无闻奋斗的人
java算法最短路dijkstra
在图论中,最短路径问题是非常常见的基本问题之一。Dijkstra算法是解决单源最短路径问题中最经典、最常用的算法之一,适用于带权有向图,边权非负的情况。本文将结合一段完整的Java实现,带你从原理到代码逐步深入掌握Dijkstra算法。一、Dijkstra算法的基本原理Dijkstra的目标是:给定起点$S$,找到图中从$S$到所有点的最短路径长度。它的核心思想是:贪心+已知最短路径的节点不会再被
- 代码随想录打卡Day58
编程绿豆侠
代码随想录深度优先算法c++数据结构leetcode
今天一共三道题,前两道看题解的,最后一道自己AC的,总体不算特别难。110.字符串接龙(卡码网)这道题没什么思路,直接看的题解,这道题用广度优先搜索是最合适的,这里我也明白了一个道理,到凡涉及到最短路径问题,用BFS是最合适的,要么就找不到,一旦找到了,就一定是最短的。这道题的字符串字典用unordered_set来实现,用来存储strList中的字符串。此外,本题还需要定义一个哈希表,键为字符串
- Python的街区医院管理系统的设计与实现(论文+源码)
毕设工作室_wlzytw
python论文项目python开发语言
基于Python的街区医院管理系统的设计与实现摘要采用Python语言、Mysql数据库,在IDEA平台下实现了街区医院管理系统,利用街道医疗机构的管理系统,不仅能够有效地进行信息管理,促进各部门之间的有序合作,还能够大幅改善医疗环境,极大地改善病人的就诊体验,并且能够更加有效地满足病人的需求,从而有助于减轻医患之间的紧张局势,并且能够更加准确地把握病人的就诊状态,从而更有针对性地完善医疗机构的运
- 【C语言】Dijkstra算法详解
RumIV
数据结构C/C++算法c语言数据结构
一、引言二、Dijkstra算法原理三、Dijkstra算法的C语言实现四、Dijkstra算法的应用场景五、总结一、引言 Dijkstra算法是一种著名的图论算法,用于解决单源最短路径问题。它是由荷兰计算机科学家EdsgerW.Dijkstra在1956年提出的。本文将详细介绍Dijkstra算法的原理、步骤,并提供C语言的实现示例。二、Dijkstra算法原理 Dijkstra算法的核心思想是
- 从底层原理到实际应用:BFS 算法借助队列征服迷宫
Reese_Cool
数据结构与算法洛谷STL算法宽度优先
文章目录一.题目分析二、算法思路三、BFS算法详解☆BFS算法中队列的操作1.初始化队列2.标记节点已访问&记录初始距离3.循环处理队列(核心逻辑)4.完整BFS示例(迷宫最短路径)关键操作总结在算法领域,迷宫问题一直是经典的挑战。本文将为您深入剖析BFS(广度优先搜索)算法和队列数据结构的紧密联系,揭示它们是如何高效解决迷宫最短路径问题的。输入样例:55010000101000000011100
- 算法思想(九)—— 最短路径
Elylicery
算法思想图论算法导论
9-1最短路径问题和松弛操作例如:路径规划,工作任务规划。之前说讲过的广度优先遍历:其实求出的是一个点(起点)到其他顶点的最短路径问题,通过BFS,得到了一棵树,这棵树就叫做最短路径树(shortestpathtree):即所有顶点距离起始顶点的总权值最小(注意和上一章所讲的最小生成树的区别)求得这个最短路径树的答案,其实就是解决了一个**单源最短路径(SingleSourceShortestPa
- 【数据结构】最短路径问题(BFS/DFS算法,Dijkstra算法,Floyd算法,Bellman-Ford算法)
samarua
#数据结构数据结构算法
BFS算法——严格层序的BFS核心思路原生广度优先遍历的特点本来就是由源点向外发散,我们通过对队列大小的暂存,可以实现严格的按层遍历,层数即路径长度。适用场景因为本算法将层数看作路径长度,所以这要求图的所有边要么无权、要么权值相等。单源的;可以求到某一个点的最短路径,也可以求到所有点的最短路径。代码实现privatevoidDFS(boolean[][]graph,intsource){intle
- 图论-最短路径算法总结
lkcc
笔记图论数据结构算法
文章目录图论单源最短路径全源最短路径问题最小生成树Prim算法Kruskal算法图论单源最短路径边权全部为正的时候,Dijkstra算法最优秀,还可以优先队列优化。Dijkstra算法朴素版需要循环枚举出来当前的最小值(作为优化的起点)所以可以用大顶堆来优化设置集合S存放已被访问的顶点,然后执行①②每次从集合(未被攻占)中选择与起点最短距离最小的点(记为U),访问并加入集合(被攻占)令顶点U为中介
- 最短路径算法(Dijkstra算法、Floyd-Warshall算法)
佛渡红尘
计算机应用与算法算法数据结构
最短路径算法是解决图论中节点之间最短路径问题的经典算法。以下是两种常见的最短路径算法:Dijkstra算法和Floyd-Warshall算法。Dijkstra算法Dijkstra算法用于解决单源最短路径问题,即给定一个起点,找到起点到其他所有节点的最短路径。基本思想:初始化距离数组dist[],将起点到自己的距离设为0,到其余各点的距离设为无穷大(表示不可达)。创建一个集合S,用于存放已找到最短路
- P=NP问题
太翌修仙笔录
deepseek超算法认知架构人工智能知识图谱算法重构
P=NP是什么难题P=NP问题是计算机科学和数学领域中一个著名的未解难题,涉及计算复杂性理论的核心内容。以下是对该问题的详细分析:###**1.P与NP的定义**-**P类(PolynomialTime)**:包含所有能在多项式时间内被**确定性图灵机**解决的决策问题。例如,排序、最短路径问题等均属于P类。-**NP类(NondeterministicPolynomialTime)**:包含所有
- Stack Navigator中使用自定义的Render Callback
AI画手小王
前端javascriptwebpack
前言关于Vite和Vue3的讨论越来越多,看了官网的特性后,真是按捺不住想尝试一下。开发环境秒开?CompositionAPI?SFCStyleCSSVariableInjection?看起来哪个都比webpack+Vue2香呀。(尤大都向React推荐Vite了,难道你还不试一下Vite么?)其实在去年,我们在LOFTER的哈利波特街区活动中就尝试使用了Vite2+Vue3搭建活动主街区页面,当
- 算法系列之深度/广度优先搜索解决水桶分水的最优解及全部解
修己xj
算法算法宽度优先
在算法学习中,广度优先搜索(BFS)适用于解决最短路径问题、状态转换问题等。深度优先搜索(DFS)适合路径搜索等问题。本文将介绍如何利用广度优先搜索解决寻找3个3、5、8升水桶均分8升水的最优解及深度优先搜索寻找可以解决此问题的所有解决方案。问题描述我们有三个水桶,容量分别为3升、5升和8升。初始状态下,8升的水桶装满水,其他两个水桶为空。我们的目标是通过一系列倒水操作,最终使得8升水桶中的水被均
- 【算法】BFS(最短路径问题、拓扑排序)
秦jh_
算法算法数据结构c++
个人主页:秦jh_-CSDN博客系列专栏:https://blog.csdn.net/qinjh_/category_12862161.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12862161&sharerefer=PC&sharesource=qinjh_&sharefrom=from_link目录边权为1的最短路径问题多源
- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- 数据结构------最短路弗洛伊德算法(Flody)
不羁修士
数据结构c++图论数据结构图搜索算法动态规划
目录前言一、Foldy代码核心介绍二、Flody代码详解:三、所有代码:四、Foldy算法分析:总结前言如果你要求所有顶点至所有顶点的最短路径问题时,弗洛伊德算法是非常不错的选择。因为它十分简洁。一、Foldy代码核心介绍(1)两个二维数组D[v][w]和P[v][w],分别存最短距离和最短路径。(2)D[v][w]=min(D[v,w],D[v][k]+D[k][w])二、Flody代码详解:/
- 最短路径算法(算法篇)
Moon2144
数据结构与算法算法图论
算法之最短路径算法最短路径算法概念:考查最短路径问题,可能会输入一个赋权图(也就是边带有权的图),则一条路径的v1v2…vN的值就是对路径的边的权求和,这叫做赋权路径长,如果是无权路径长就是单纯的路径上的边数。在赋权图,可能会出现负值边的情况,这样当我们去找最短路径时,可能会产生负值圈,毕竟一直走负值边可以将数值变得更短。单源最短路径问题:给定一个赋权图G=(V,E)和一个特定顶点s作为输入,找出
- 深入剖析 C++ 中的迪杰斯特拉算法
小白布莱克
c++算法开发语言
在图论算法的领域中,迪杰斯特拉(Dijkstra)算法是一颗璀璨的明星,它在解决单源最短路径问题上发挥着关键作用。对于学习C++编程的开发者来说,掌握迪杰斯特拉算法不仅能加深对算法思维的理解,还能在实际项目中有效解决诸多路径规划相关问题。迪杰斯特拉算法原理迪杰斯特拉算法是一种贪心算法,用于计算一个节点到图中其他所有节点的最短路径。它的核心思想是:从源节点出发,每次从未确定最短路径的节点中选择距离源
- 深入解析BFS算法:C++实现无权图最短路径的高效解决方案
Exhausted、
算法c++算法开发语言宽度优先数据结构
在无权图中,广度优先搜索(BFS)是解决最短路径问题的高效算法。接下来博主从专业角度深入探讨其实现细节,并给出C++代码示例:目录一、核心原理二、算法步骤三、C++实现关键点1.数据结构2.边界检查3.路径回溯(可选)四、代码实现五、路径回溯实现六、复杂度分析七、适用场景与限制一、核心原理BFS按层遍历节点,确保首次到达目标节点的路径是最短的。其核心特性为:队列管理:先进先出(FIFO)保证按层扩
- c/c++蓝桥杯经典编程题100道(22)最短路径问题
tamak
算法数据结构图论c语言c++蓝桥杯
最短路径问题->返回c/c++蓝桥杯经典编程题100道-目录目录最短路径问题一、题型解释二、例题问题描述三、C语言实现解法1:Dijkstra算法(正权图,难度★★)解法2:Bellman-Ford算法(含负权边,难度★★★)四、C++实现解法1:Dijkstra算法(优先队列优化,难度★★☆)解法2:Floyd-Warshall算法(多源最短路径,难度★★★)五、总结对比表六、特殊方法与内置函数
- 深入理解 C++ 算法之 SPFA
小白布莱克
c++算法开发语言
在图论算法的世界里,单源最短路径问题是一个经典且重要的研究方向。SPFA(ShortestPathFasterAlgorithm)算法作为求解单源最短路径问题的一种高效算法,在C++编程中有着广泛的应用。本文将深入探讨SPFA算法的原理、实现步骤以及在C++中的代码实现。SPFA算法原理SPFA算法本质上是对Bellman-Ford算法的一种优化。Bellman-Ford算法通过对所有边进行多次松
- 基于Dijkstra算法的最短路径求解与应用解析
徐浪老师
徐浪老师大讲堂算法服务器前端
标题:基于Dijkstra算法的最短路径求解与应用解析一、引言最短路径问题是图论中的一个经典问题,广泛应用于交通导航、网络路由、地图定位等多个领域。解决最短路径问题,能够帮助我们找到从一个起点到一个终点的最短路径,通常以路径的长度或权值总和为度量。在图的加权边上,最短路径问题尤其重要。Dijkstra算法作为解决单源最短路径问题的经典算法,以其较低的计算复杂度和稳定性,在实践中得到了广泛应用。Di
- 算法详解——Dijkstra算法
晓shuo
算法Dijkstra
Dijkstra算法的目的是寻找单起点最短路径,其策略是贪心加非负加权队列一、单起点最短路径问题 单起点最短路径问题:给定一个加权连通图中的特定起点,目标是找出从该起点到图中所有其他顶点的最短路径集合。需要明确的是,这里关心的不仅仅局限于寻找一条从起点出发到任一其他顶点的单一最短路径;单起点最短路径问题要求的是一组路径,每条路径都从起点出发通向图中的一个不同顶点,当然,其中某些路径可能具有公
- 验证 Dijkstra 算法程序输出的奥秘
醉心编码
c/c++技术类通信软件算法开发语言c语言数据结构
一、引言Dijkstra算法作为解决图中单源最短路径问题的经典算法,在网络路由、交通规划、资源分配等众多领域有着广泛应用。其通过不断选择距离源节点最近的未访问节点,逐步更新邻居节点的最短路径信息,以求得从源节点到其他所有节点的最短路径。在实际应用中,确保Dijkstra算法程序的正确性至关重要。例如,在网络路由中,错误的最短路径计算可能导致数据包传输的低效甚至错误;在交通规划里,不准确的路径规划会
- DS图(下)(19)
tan180°
DS开发语言c++数据结构后端
文章目录前言一、最短路径的概念二、单源最短路径-Dijkstra算法三、单源最短路径-Bellman-Ford算法四、多源最短路径-Floyd-Warshall算法总结前言 加油,今天就是图的最后一篇了,撑住!! 今天我们要学的就是最短路径问题!!一、最短路径的概念最短路径问题:从带权有向图中的某一顶点出发,找出一条通往另一顶点的最短路径,最短指的是路径各边的权值总和达到最小,最短路径可分为单
- 【C++动态规划】1473. 粉刷房子 III|2056
闻缺陷则喜何志丹
c++动态规划算法leetcode粉刷房子
本文涉及知识点C++动态规划LeetCode1473.粉刷房子III在一个小城市里,有m个房子排成一排,你需要给每个房子涂上n种颜色之一(颜色编号为1到n)。有的房子去年夏天已经涂过颜色了,所以这些房子不可以被重新涂色。我们将连续相同颜色尽可能多的房子称为一个街区。(比方说houses=[1,2,2,3,3,2,1,1],它包含5个街区[{1},{2,2},{3,3},{2},{1,1}]。)给你
- 动态图最短路径的实时优化:应对边权重频繁更新的工程实践
热爱分享的博士僧
人工智能
在处理动态图中的最短路径问题时,尤其是面对边权重频繁更新的情况,传统的静态图算法如Dijkstra算法或Bellman-Ford算法可能不再适用或效率低下。这是因为每次边权重更新都需要重新计算整个图的最短路径,导致计算成本非常高。为了应对这种情况,需要采用一些特定的技术和策略来优化实时性能。1.动态最短路径算法A.动态Dijkstra算法虽然标准的Dijkstra算法是为静态图设计的,但可以通过缓
- 图论复习第二章
sinat_40210730
期末复习图论
最短路径问题针对最短路网络(带权有向无环图)存在性:如果s到v的途径上包含负费用有向圈,则不存在最短s-v途径,否则存在最短s-v简单路最优性原理(最优子结构特征):若图G不存在非负有向圈,则任意最短子路也是相应点对之间的最短路三角不等式定理:d(v,w)指v到w的最短路径长度,则d(v,w)<=d(v,x)+d(x,w)最短路径算法函数方程(使用最优性原理所给出的关于最优解目标值之间的递归关系)
- 华为OD机试 - 两个字符串间的最短路径问题 - 动态规划(Python/JS/C/C++ 2024 D卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述给定两个字符串,分别为字符串A与字符串B。例如A字符串为ABCA
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt