Python实现SVM(支持向量机)

Python实现SVM(支持向量机)

运行环境

  • Pyhton3
  • numpy(科学计算包)
  • matplotlib(画图所需,不画图可不必)

计算过程

st=>start: 开始
e=>end: 结束
op1=>operation: 读入数据
op2=>operation: 格式化数据
cond=>condition: 是否达到迭代次数
op3=>operation: 寻找超平面分割最小间隔
ccond=>conditon: 数据是否改变
op4=>operation: 输出结果

st->op1->op2->cond
cond(yes)->op4->e
cond(no)->op3

啊,这markdown flow好难用,我决定就画到这吧=。=

输入样例

/* testSet.txt */
3.542485    1.977398    -1
3.018896    2.556416    -1
7.551510    -1.580030   1
2.114999    -0.004466   -1
8.127113    1.274372    1
7.108772    -0.986906   1
8.610639    2.046708    1
2.326297    0.265213    -1
3.634009    1.730537    -1
0.341367    -0.894998   -1
3.125951    0.293251    -1
2.123252    -0.783563   -1
0.887835    -2.797792   -1
7.139979    -2.329896   1
1.696414    -1.212496   -1
8.117032    0.623493    1
8.497162    -0.266649   1
4.658191    3.507396    -1
8.197181    1.545132    1
1.208047    0.213100    -1
1.928486    -0.321870   -1
2.175808    -0.014527   -1
7.886608    0.461755    1
3.223038    -0.552392   -1
3.628502    2.190585    -1
7.407860    -0.121961   1
7.286357    0.251077    1
2.301095    -0.533988   -1
-0.232542   -0.547690   -1
3.457096    -0.082216   -1
3.023938    -0.057392   -1
8.015003    0.885325    1
8.991748    0.923154    1
7.916831    -1.781735   1
7.616862    -0.217958   1
2.450939    0.744967    -1
7.270337    -2.507834   1
1.749721    -0.961902   -1
1.803111    -0.176349   -1
8.804461    3.044301    1
1.231257    -0.568573   -1
2.074915    1.410550    -1
-0.743036   -1.736103   -1
3.536555    3.964960    -1
8.410143    0.025606    1
7.382988    -0.478764   1
6.960661    -0.245353   1
8.234460    0.701868    1
8.168618    -0.903835   1
1.534187    -0.622492   -1
9.229518    2.066088    1
7.886242    0.191813    1
2.893743    -1.643468   -1
1.870457    -1.040420   -1
5.286862    -2.358286   1
6.080573    0.418886    1
2.544314    1.714165    -1
6.016004    -3.753712   1
0.926310    -0.564359   -1
0.870296    -0.109952   -1
2.369345    1.375695    -1
1.363782    -0.254082   -1
7.279460    -0.189572   1
1.896005    0.515080    -1
8.102154    -0.603875   1
2.529893    0.662657    -1
1.963874    -0.365233   -1
8.132048    0.785914    1
8.245938    0.372366    1
6.543888    0.433164    1
-0.236713   -5.766721   -1
8.112593    0.295839    1
9.803425    1.495167    1
1.497407    -0.552916   -1
1.336267    -1.632889   -1
9.205805    -0.586480   1
1.966279    -1.840439   -1
8.398012    1.584918    1
7.239953    -1.764292   1
7.556201    0.241185    1
9.015509    0.345019    1
8.266085    -0.230977   1
8.545620    2.788799    1
9.295969    1.346332    1
2.404234    0.570278    -1
2.037772    0.021919    -1
1.727631    -0.453143   -1
1.979395    -0.050773   -1
8.092288    -1.372433   1
1.667645    0.239204    -1
9.854303    1.365116    1
7.921057    -1.327587   1
8.500757    1.492372    1
1.339746    -0.291183   -1
3.107511    0.758367    -1
2.609525    0.902979    -1
3.263585    1.367898    -1
2.912122    -0.202359   -1
1.731786    0.589096    -1
2.387003    1.573131    -1

代码实现

# -*- coding: utf-8 -*-
__author__ = 'Wsine'

from numpy import *
import matplotlib.pyplot as plt
import operator
import time

def loadDataSet(fileName):
    dataMat = []
    labelMat = []
    with open(fileName) as fr:
        for line in fr.readlines():
            lineArr = line.strip().split('\t')
            dataMat.append([float(lineArr[0]), float(lineArr[1])])
            labelMat.append(float(lineArr[2]))
    return dataMat, labelMat

def selectJrand(i, m):
    j = i
    while (j == i):
        j = int(random.uniform(0, m))
    return j

def clipAlpha(aj, H, L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

class optStruct:
    def __init__(self, dataMatIn, classLabels, C, toler):
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m, 1)))
        self.b = 0
        self.eCache = mat(zeros((self.m, 2)))

def calcEk(oS, k):
    fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJ(i, oS, Ei):
    maxK = -1
    maxDeltaE = 0
    Ej = 0
    oS.eCache[i] = [1, Ei]
    validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:
            if k == i:
                continue
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k
                maxDeltaE = deltaE
                Ej = Ek
        return maxK, Ej
    else:
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

def updateEk(oS, k):
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1, Ek]

def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        j, Ej = selectJ(i, oS, Ei)
        alphaIold = oS.alphas[i].copy()
        alphaJold = oS.alphas[j].copy()
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if (L == H):
            # print("L == H")
            return 0
        eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
        if eta >= 0:
            # print("eta >= 0")
            return 0
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
        oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            # print("j not moving enough")
            return 0
        oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
        updateEk(oS, i)
        b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
        b2 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
            oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
            oS.b = b2
        else:
            oS.b = (b1 + b2) / 2.0
        return 1
    else:
        return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
    """
 输入:数据集, 类别标签, 常数C, 容错率, 最大循环次数
 输出:目标b, 参数alphas
 """
    oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
    iterr = 0
    entireSet = True
    alphaPairsChanged = 0
    while (iterr < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:
            for i in range(oS.m):
                alphaPairsChanged += innerL(i, oS)
            # print("fullSet, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
            iterr += 1
        else:
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i, oS)
                # print("non-bound, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
            iterr += 1
        if entireSet:
            entireSet = False
        elif (alphaPairsChanged == 0):
            entireSet = True
        # print("iteration number: %d" % iterr)
    return oS.b, oS.alphas

def calcWs(alphas, dataArr, classLabels):
    """
 输入:alphas, 数据集, 类别标签
 输出:目标w
 """
    X = mat(dataArr)
    labelMat = mat(classLabels).transpose()
    m, n = shape(X)
    w = zeros((n, 1))
    for i in range(m):
        w += multiply(alphas[i] * labelMat[i], X[i, :].T)
    return w

def plotFeature(dataMat, labelMat, weights, b):
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 0])
            ycord1.append(dataArr[i, 1])
        else:
            xcord2.append(dataArr[i, 0])
            ycord2.append(dataArr[i, 1])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(2, 7.0, 0.1)
    y = (-b[0, 0] * x) - 10 / linalg.norm(weights)
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2')
    plt.show()

def main():
    trainDataSet, trainLabel = loadDataSet('testSet.txt')
    b, alphas = smoP(trainDataSet, trainLabel, 0.6, 0.0001, 40)
    ws = calcWs(alphas, trainDataSet, trainLabel)
    print("ws = \n", ws)
    print("b = \n", b)
    plotFeature(trainDataSet, trainLabel, ws, b)

if __name__ == '__main__':
    start = time.clock()
    main()
    end = time.clock()
    print('finish all in %s' % str(end - start))

输出样例

ws =
 [[ 0.65307162]
 [-0.17196128]]
b =
 [[-2.89901748]]
finish all in 2.5683854014099112

Python实现SVM(支持向量机)_第1张图片

绘图方面还存在一些bug。

你可能感兴趣的:(Python实现SVM(支持向量机))