程序员必备:技术面试准备手册

这份清单,既是一份有助于对这些题目做深入研究的快速指南和参考,也算是计算机科学课程中不能忘记的基础知识总结,因此并不可能全面覆盖所有内容。它也可以作为 gist 在 Github 上公开,人人都可以编辑和补充。

 

一、数据结构基础

 

数组

 

定义

 

  • 按顺序连续存储数据元素,通常索引从0开始

  • 以集合论中的元组为基础

  • 数组是最古老,最常用的数据结构

 

知识要点

 

  • 索引最优;不利于查找、插入和删除(除非在数组最末进行)

  • 最基础的是线性数组或一维数组

    数组长度固定,意味着声明数组时应指明长度

  • 动态数组与一维数组类似,但为额外添加的元素预留了空间

    如果动态数组已满,则把每一元素复制到更大的数组中

  • 类似网格或嵌套数组,二维数组有 x 和 y 索引

 

时间复杂度

 

  • O(1)索引:一维数组:O(1),动态数组:O(1)

  • O(n)查找:一维数组:O(n),动态数组:O(n)

  • O(log n)最优查找:一维数组:O(log n),动态数组:O(log n)

  • O(n)插入:一维数组:n/a,动态数组:O(n)

 

链表

 

定义

 

  • 结点存储数据,并指向下一结点

    最基础的结点包含一个数据和一个指针(指向另一结点)

    • 链表靠结点中指向下一结点的指针连接成链

 

要点

 

  • 为优化插入和删除而设计,但不利于索引和查找

  • 双向链表包含指向前一结点的指针

  • 循环链表是一种终端结点指针域指向头结点的简单链表

  • 堆栈通常由链表实现,不过也可以利用数组实现

    堆栈是“后进先出”(LIFO)的数据结构

    • 由链表实现时,只有头结点处可以进行插入或删除操作

  • 同样地,队列也可以通过链表或数组实现

    队列是“先进先出”(FIFO)的数据结构

    • 由双向链表实现时,只能在头部删除,在末端插入

 

时间复杂度

 

  • O(n)索引:链表:O(n)

  • O(n)查找:链表:O(n)

  • Linked Lists: O(n)最优查找:链表:O(n)

  • O(1)插入:链表:O(1)

 

哈希表或哈希图

 

定义

 

  • 通过键值对进行储存

  • 哈希函数接受一个关键字,并返回该关键字唯一对应的输出值

    这一过程称为散列(hashing),是输入与输出一一对应的概念

    • 哈希函数为该数据返回在内存中唯一的存储地址

 
要点

 

  • 为查找、插入和删除而设计

  • 哈希冲突是指哈希函数对两个不同的数据项产生了相同的输出值

    所有的哈希函数都存在这个问题

    • 用一个非常大的哈希表,可以有效缓解这一问题

    • 哈希表对于关联数组和数据库检索十分重要

 

时间复杂度

 

  • O(1)索引:哈希表:O(1)

  • O(1)查找:哈希表:O(1)

  • O(1)插入:哈希表:O(1)

 

二叉树

 

定义

 

  • 一种树形的数据结构,每一结点最多有两个子树

    • 子结点又分为左子结点和右子结点

 

要点

 

  • 为优化查找和排序而设计

  • 退化树是一种不平衡的树,如果完全只有一边,其本质就是一个链表

  • 相比于其他数据结构,二叉树较为容易实现

  • 可用于实现二叉查找树

    • 由于上述原因,二叉查找树通常被用作一种数据结构,而不是二叉树

    • 重复的结点可省略

    • 右子树有比双亲结点更大的键值

    • 左子树有比双亲结点更小的键值

    • 二叉树利用可比较的键值来确定子结点的方向

 

时间复杂度

 

  • 索引:二叉查找树:O(log n)

  • 查找:二叉查找树:O(log n)

  • 插入:二叉查找树:O(log n)

 

二、搜索基础

 

广度优先搜索

 

定义

 

  • 一种在树(或图)中进行搜索的算法,从根结点开始,优先按照树的层次进行搜索

    • 最下层最右端是最末结点(即该结点深度最大,且在当前层次的最右端)

    • 当前一层搜索完毕后,转入遍历下一层中最左边的结点

    • 进行搜索时,同时追踪当前层中结点的子结点

    • 搜索同一层中的各结点,通常从左往右进行

 

要点

 

  • 当树的宽度大于深度时,该搜索算法较优

  • 进行树的遍历时,使用队列存储树的信息

    • 由于需要存储指针,队列需要占用更多内存

    • 原因是:使用队列比深度优先搜索更为内存密集

 

时间复杂度

 

  • O(|E| + |V|)查找:广度优先搜索:O(|E| + |V|)

  • E 是边的数目

  • V 是顶点的数目

 

深度优先搜索

 

定义

 

  • 一种在树(或图)中进行搜索的算法,从根结点开始,优先按照树的深度进行搜索

    • 最右的结点是最末结点(即所有祖先中最右的结点)

    • 当前这一分支搜索完毕后,转入根节点的右子结点,然后不断遍历左子节点,直到到达最底端

    • 一旦到达某一分支的最末端,将返回上一结点并遍历该分支的右子结点,如果可以将从左往右遍历子结点

    • 从左边开始一直往下遍历树的结点,直到不能继续这一操作

 

要点

 

  • 当树的深度大于宽度时,该搜索算法较优

  • 利用堆栈将结点压栈

    • 一旦不能向左继续遍历,则对栈进行操作

    • 因为堆栈是“后进先出”的数据结构,所以无需跟踪结点的指针。与广度优先搜索相比,它对内存的要求不高。

 

时间复杂度

 

  • O(|E| + |V|)查找:深度优先搜索:O(|E| + |V|)

  • E 是边的数目

  • V 是结点的数目

 

广度优先搜索 VS. 深度优先搜索

 

  • 这一问题最简单的回答就是,选取何种算法取决于树的大小和形态

    • 就深度而言,较窄的树适用深度优先搜索

    • 就宽度而言,较浅的树适用广度优先搜索

 

细微的区别

 

  • 由于广度优先搜索(BFS)使用队列来存储结点的信息和它的子结点,所以需要用到的内存可能超过当前计算机可提供的内存(不过其实你不必担心这一点)

  • 如果要在某一深度很大的树中使用深度优先搜索(DFS),其实在搜索中大可不必走完全部深度。可在 xkcd 上查看更多相关信息。

  • 广度优先搜索趋于一种循环算法。

  • 深度优先搜索趋于一种递归算法

 

三、高效排序基础

 

 

归并排序

 

定义

 

  • 一种基于比较的排序算法

    • 重复上述过程,直到归并成只有一个数据集

    • 一旦所有的数对都完成排序,则开始比较最左两个数对中的最左元素,形成一个含有四个数的有序集合,其中最小数在最左边,最大数在最右边

    • 依次比较每个数字,将最小的数移动到每对数的左边

    • 将整个数据集划分成至多有两个数的分组

 

要点

 

  • 这是最基础的排序算法之一

  • 必须理解:首先将所有数据划分成尽可能小的集合,再作比较

 

时间复杂度

 

  • O(n)最好的情况:归并排序:O(n)

  • 平均情况:归并排序:O(n log n)

  • 最坏的情况:归并排序:O(n log n)

 

快速排序

 

定义

 

  • 一种基于比较的排序算法

    • 在左半部分重复上述操作,直到左边部分的排序完成后,对右边部分执行相同的操作

    • 通过选取平均数将整个数据集划分成两部分,并把所有小于平均数的元素移动到平均数左边

  • 计算机体系结构支持快速排序过程

 

要点

 

  • 尽管快速排序与许多其他排序算法有相同的时间复杂度(有时会更差),但通常比其他排序算法执行得更快,例如归并排序。

  • 必须理解:不断通过平均数将数据集对半划分,直到所有的数据都完成排序

 

时间复杂度

 

  • O(n)最好的情况:归并排序:O(n)

  • O(n log n)平均情况:归并排序:O(n log n)

  • 最坏的情况:归并排序:O(n2)

 

冒泡排序

 

定义

 

  • 一种基于比较的排序算法

    • 重复上述步骤,直到不再把元素左移

    • 从左往右重复对数字进行两两比较,把较小的数移到左边

 

要点

 

  • 尽管这一算法很容易实现,却是这三种排序方法中效率最低的

  • 必须理解:每次向右移动一位,比较两个元素,并把较小的数左移

 

时间复杂度

 

  • O(n)最好的情况:归并排序:O(n)

  • O(n2)平均情况:归并排序: O(n2)

  • O(n2)最坏的情况:归并排序: O(n2)

 

归并排序 VS. 快速排序

 

  • 在实践中,快速排序执行速率更快

  • 归并排序首先将集合划分成最小的分组,在对分组进行排序的同时,递增地对分组进行合并

  • 快速排序不断地通过平均数划分集合,直到集合递归地有序

 

伯乐在线推荐阅读:

 

  • 《视觉直观感受 7 种常用的排序算法》

  • 《匈牙利 Sapientia 大学的 6 种排序算法舞蹈视频》

  • 《视频:6 分钟演示 15 种排序算法》

  • 《SORTING:可视化展示排序算法的原理,支持单步查看》

  • 《VisuAlgo:通过动画学习算法和数据结构》

 

四、算法类型基础

 

递归算法

 

定义

 

  • 在定义过程中调用其本身的算法

    • 基本事件:用于结束递归的条件语句

    • 递归事件:用于触发递归的条件语句

 

要点

 

  • 堆栈级过深和栈溢出

    • 通常用于深度优先搜索

    • 必须理解:不论基本事件是否被触发,它在递归中都不可或缺

    • 那就意味着因为算法错误,或者问题规模太过庞大导致问题解决前 RAM 已耗尽,从而基本事件从未被触发

    • 如果在递归算法中见到上述两种情况中的任一个,那就糟糕了

 

迭代算法

 

定义

 

  • 一种被重复调用有限次数的算法,每次调用都是一次迭代

    • 通常用于数据集中递增移动

 

要点

 

  • 通常迭代的形式为循环、for、while和until语句

  • 把迭代看作是在集合中依次遍历每个元素

  • 通常用于数组的遍历

 

递归 VS. 迭代

 

  • 由于递归和迭代可以相互实现,两者之间的区别很难清晰地界定。但必须知道:

    • 迭代占用的内存更少

    • 通常递归的表意性更强,更易于实现

  • (i.e. Haskell)函数式语言趋向于使用递归(如 Haskell 语言)

  • 命令式语言趋向于使用迭代(如 Ruby 语言)

  • 点击 Stack Overflow post 了解更多详情

 

遍历数组的伪代码(这就是为什么使用迭代的原因)

 

Recursion | Iteration

----------------------------------|----------------------------------

recursive method (array, n) | iterative method (array)

if array[n] is not nil | for n from 0 to size of array

print array[n] | print(array[n])

recursive method(array, n+1) |

else |

exit loop

 

贪婪算法

 

定义

 

  • 一种算法,在执行的同时只选择满足某一条件的信息

  • 通常包含5个部分,摘自维基百科:

    • 解决方案函数,该函数将指明完整的解决方案

    • 目标函数,该函数为解决方案或部分解赋值

    • 可行性函数,该函数用于决策某一候选项是否有助于解决方案

    • 选择函数,该函数选取要加入解决方案中的最优候选项

    • 候选集,从该集合中可得出解决方案

 

要点

 

  • 用于找到预定问题的最优解

  • 通常用于只有少部分元素能满足预期结果的数据集合

  • 通常贪婪算法可帮助一个算法降低时间 复杂度

 

伪代码:用贪婪算法找到数组中任意两个数字间的最大差值

 

greedy algorithm (array)

var largest difference = 0

var new difference = find next difference (array[n], array[n+1])

largest difference = new difference if new difference is > largest difference

repeat above two steps until all differences have been found

return largest difference

 

 
这一算法无需比较所有数字两两之间的差值,省略了一次完整迭代。 

你可能感兴趣的:(程序员必备:技术面试准备手册)