Flume、Kafka、Storm结合

Todo:

对Flume的sink进行重构,调用kafka的消费生产者(producer)发送消息;

在Sotrm的spout中继承IRichSpout接口,调用kafka的消息消费者(Consumer)来接收消息,然后经过几个自定义的Bolt,将自定义的内容进行输出

 

Flume -- Kafka 

 

编写KafkaSink

从$KAFKA_HOME/lib下复制

kafka_2.10-0.8.2.1.jar

kafka-clients-0.8.2.1.jar

scala-library-2.10.4.jar

到$FLUME_HOME/lib


在Eclipse新建工程,从$FLUME_HOME/lib下导入

commons-logging-1.1.1.jar

flume-ng-configuration-1.6.0.jar

flume-ng-core-1.6.0.jar

flume-ng-sdk-1.6.0.jar

zkclient-0.3.jar

kafka_2.10-0.8.2.1.jar

kafka-clients-0.8.2.1.jar

scala-library-2.10.4.jar

到工程。

 

新建文件KafkaSink.java

import java.util.Properties;
 
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
 
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.flume.Channel;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.Transaction;
import org.apache.flume.conf.Configurable;
import org.apache.flume.sink.AbstractSink;
 
 
public class KafkaSink extends AbstractSink implements Configurable {
    private static final Log logger = LogFactory.getLog(KafkaSink.class);
 
    private String topic;
    private Producer<String, String> producer;
 
    public void configure(Context context) {
        topic = "flume_test";
        Properties props = new Properties();
        props.setProperty("metadata.broker.list", "localhost:9092");
        props.setProperty("serializer.class", "kafka.serializer.StringEncoder");
        props.put("zookeeper.connect", "localhost:2181");
        props.setProperty("num.partitions", "4"); // 
        props.put("request.required.acks", "1");
        ProducerConfig config = new ProducerConfig(props);
        producer = new Producer<String, String>(config);
        logger.info("KafkaSink初始化完成.");
 
    }
 
    public Status process() throws EventDeliveryException {
        Channel channel = getChannel();
        Transaction tx = channel.getTransaction();
        try {
            tx.begin();
            Event e = channel.take();
            if (e == null) {
                tx.rollback();
                return Status.BACKOFF;
            }
            KeyedMessage<String, String> data = new KeyedMessage<String, String>(topic, new String(e.getBody()));
            producer.send(data);
            logger.info("flume向kafka发送消息:" + new String(e.getBody()));
            tx.commit();
            return Status.READY;
        } catch (Exception e) {
            logger.error("Flume KafkaSinkException:", e);
            tx.rollback();
            return Status.BACKOFF;
        } finally {
            tx.close();
        }
    }
}

导出jar包,放到$FLUME_HOME/lib下

(File->Export->Jar File 全部默认参数)

 

 

创建kafka.conf

a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1.type = KafkaSink
 
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

 

 

测试

启动kafka

cd ~/app/kafka
./bin/zookeeper-server-start.sh ./config/zookeeper.properties> /dev/null &
./bin/kafka-server-start.sh ./config/server.properties > /dev/null &

 

创建topic

~/app/kafka_2.10-0.8.2.1/bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 4  --topic flume_test

 

启动控制台消费者

~/app/kafka_2.10-0.8.2.1/bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic flume_test  --from-beginning

 

启动flume agent

flume-ng agent -c conf  -f ~/test/kafka.conf --name a1 -Dflume.root.logger=INFO,console

 

发送消息

echo "hey manhua" |nc localhost 5140
echo "nice shot" |nc localhost 5140

 

flume和kafka结合的一个工具

https://github.com/kevinjmh/flumeng-kafka-plugin/tree/master/flumeng-kafka-plugin/src/main/java/org/apache/flume/plugins

 

 

Kafka -- Storm

http://storm.apache.org/index.html

下载-解压-修改/etc/profile

 

在Eclipse新建maven工程,其中pom.xml文件填入如下:

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
        <groupId>manhua</groupId>
        <artifactId>kafka-storm-test</artifactId>
        <version>0.0.1-SNAPSHOT</version>
        <packaging>jar</packaging>
        <name>kafka-storm</name>
        <url>http://maven.apache.org</url>
        <properties>
                <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        </properties>
        <repositories>
                <repository>
                        <id>github-releases</id>
                        <url>http://oss.sonatype.org/content/repositories/github-releases/</url>
                </repository>
                <repository>
                        <id>clojars.org</id>
                        <url>http://clojars.org/repo</url>
                </repository>
        </repositories>
        <dependencies>
                <dependency>
                        <groupId>junit</groupId>
                        <artifactId>junit</artifactId>
                        <version>4.11</version>
                        <scope>test</scope>
                </dependency>
                <dependency>
                        <groupId>org.apache.kafka</groupId>
                        <artifactId>kafka_2.10</artifactId>
                        <version>0.8.2.1</version>
                </dependency>
                <dependency>
                        <groupId>log4j</groupId>
                        <artifactId>log4j</artifactId>
                        <version>1.2.14</version>
                </dependency>
                <dependency>
                        <groupId>org.apache.storm</groupId>
                        <artifactId>storm-core</artifactId>
                        <version>0.10.0</version>
                        <!-- keep storm out of the jar-with-dependencies -->
                        <scope>provided</scope>
                </dependency>
                <dependency>
                        <groupId>commons-collections</groupId>
                        <artifactId>commons-collections</artifactId>
                        <version>3.2.1</version>
                </dependency>
        </dependencies>
</project>

在src/main/java创建两个java文件 

 KafkaSpouttest.java

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;

public class KafkaSpouttest implements IRichSpout {

        private SpoutOutputCollector collector;
        private ConsumerConnector consumer;
        private String topic;

        public KafkaSpouttest() {
        }

        public KafkaSpouttest(String topic) {
                this.topic = topic;
        }

        public void nextTuple() {
        }

        public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
                this.collector = collector;
        }

        public void ack(Object msgId) {
        }

        public void activate() {

                consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig());

                Map<String, Integer> topickMap = new HashMap<String, Integer>();
                topickMap.put(topic, 1);

                System.out.println("*********Results********topic:" + topic);

                Map<String, List<KafkaStream<byte[], byte[]>>> streamMap = consumer.createMessageStreams(topickMap);
                KafkaStream<byte[], byte[]> stream = streamMap.get(topic).get(0);
                ConsumerIterator<byte[], byte[]> it = stream.iterator();
                while (it.hasNext()) {
                        String value = new String(it.next().message());
                        SimpleDateFormat formatter = new SimpleDateFormat("yyyy年MM月dd日 HH:mm:ss SSS");
                        Date curDate = new Date(System.currentTimeMillis());// 获取当前时间
                        String str = formatter.format(curDate);

                        System.out.println("storm接收到来自kafka的消息------->" + value);

                        collector.emit(new Values(value, 1, str), value);
                }
        }

        private static ConsumerConfig createConsumerConfig() {
                Properties props = new Properties();
                // 设置zookeeper的链接地址
                props.put("zookeeper.connect", "localhost:2181");
                // 设置group id
                props.put("group.id", "1");
                // kafka的group 消费记录是保存在zookeeper上的, 但这个信息在zookeeper上不是实时更新的, 需要有个间隔时间更新
                props.put("auto.commit.interval.ms", "1000");
                props.put("zookeeper.session.timeout.ms", "10000");
                return new ConsumerConfig(props);
        }

        public void close() {
        }

        public void deactivate() {
        }

        public void fail(Object msgId) {
        }

        public void declareOutputFields(OutputFieldsDeclarer declarer) {
                declarer.declare(new Fields("word", "id", "time"));
        }

        public Map<String, Object> getComponentConfiguration() {
                System.out.println("getComponentConfiguration被调用");
                topic = "flume_test";
                return null;
        }
}

KafkaTopologytest.java

import java.util.HashMap;
import java.util.Map;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
 
public class KafkaTopologytest {
 
    public static void main(String[] args) {
        TopologyBuilder builder = new TopologyBuilder();
 
        builder.setSpout("spout", new KafkaSpouttest(""), 1);
        builder.setBolt("bolt1", new Bolt1(), 2).shuffleGrouping("spout");
        builder.setBolt("bolt2", new Bolt2(), 2).fieldsGrouping("bolt1",new Fields("word"));
 
        Map conf = new HashMap();
        conf.put(Config.TOPOLOGY_WORKERS, 1);
        conf.put(Config.TOPOLOGY_DEBUG, true);
 
        LocalCluster cluster = new LocalCluster();
        cluster.submitTopology("my-flume-kafka-storm-topology-integration", conf, builder.createTopology());
         
        Utils.sleep(1000*60*5); // local cluster test ...
        cluster.shutdown();
    }
     
    public static class Bolt1 extends BaseBasicBolt {
         
        public void execute(Tuple input, BasicOutputCollector collector) {
            try {
                String msg = input.getString(0);
                int id = input.getInteger(1);
                String time = input.getString(2);
                msg = msg+"bolt1";
                System.out.println("对消息加工第1次-------[arg0]:"+ msg +"---[arg1]:"+id+"---[arg2]:"+time+"------->"+msg);
                if (msg != null) {
                    collector.emit(new Values(msg));
                }
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
  
        
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("word"));
        }
    }
     
    public static class Bolt2 extends BaseBasicBolt {
        Map<String, Integer> counts = new HashMap<String, Integer>();
  
        
        public void execute(Tuple tuple, BasicOutputCollector collector) {
            String msg = tuple.getString(0);
            msg = msg + "bolt2";
            System.out.println("对消息加工第2次---------->"+msg);
            collector.emit(new Values(msg,1));
        }
  
       
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("word", "count"));
        }
    }
}

 

测试

接着上面Flume-Kafka的测试,保证kafka已经启动,以及创建了对应的topic

# 启动storm之前必须启动zookeeper

# 启动storm
storm nimbus &
storm supervisor &
storm ui &
# 打开浏览器地址http://localhost:8080 看到界面表示启动成功

 

测试1

启动控制台的生产者和消费者

~/app/kafka_2.10-0.8.2.1/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic flume_test

~/app/kafka_2.10-0.8.2.1/bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic flume_test  --from-beginning

右键工程中KafkaTopologytest.java运行storm程序

现在在运行生产者的控制台输入值,在消费者和Eclipse都会有显示

 

测试2

从$KAFKA_HOME/lib下复制

kafka_2.10-0.8.2.1.jar

kafka-clients-0.8.2.1.jar

scala-library-2.10.4.jar

metrics-core-2.2.0.jar

zkclient-0.3.jar

zookeeper-3.4.6.jar

到$STORM_HOME/lib

 

类似上面的方法导出jar包(File->Export->Jar File 全部默认参数),放到任意目录下

使用storm执行jar包

storm jar  kafkaSpout.jar KafkaTopologytest

 

 

 

 

 

启动流程:zookeeper - kafka - storm - flume

 

 

 

 

Ref:http://www.aboutyun.com/thread-8915-1-1.html

 

你可能感兴趣的:(Flume、Kafka、Storm结合)