MapReduce-XML处理-定制OutputFormat及定制RecordWriter

这一篇紧接上一篇博客《 MapReduce-XML处理-定制InputFormat及定制RecordReader》,上一篇是说明InputFormat和RecordReader,这里说明OutputFormat以及RecordWriter的定制,下面是
这次测试的要求:
输入数据:
<configuration>
  <property>
    <name>hadoop.kms.authentication.type</name>
    <value>simple</value>
  </property>
  <property>
    <name>hadoop.kms.authentication.kerberos.keytab</name>
    <value>${user.home}/kms.keytab</value>
  </property>
  <property>
    <name>hadoop.kms.authentication.kerberos.principal</name>
    <value>HTTP/localhost</value>
  </property>
  <property>
    <name>hadoop.kms.authentication.kerberos.name.rules</name>
    <value>DEFAULT</value>
  </property>
</configuration>
实现的结果:把上述XML文件中的value的值倒序,然后按照XML标签的格式输出,如下:
<name>hadoop.kms.authentication.kerberos.keytab</name>
<value>batyek.smk/}emoh.resu{$</value>
<name>hadoop.kms.authentication.kerberos.name.rules</name>
<value>TLUAFED</value>
<name>hadoop.kms.authentication.kerberos.principal</name>
<value>tsohlacol/PTTH</value>
<name>hadoop.kms.authentication.type</name>
<value>elpmis</value>
由于代码量过多,这里就不贴出上一篇说明InputFormat和RecordReader的代码了,如果要做完整的测试到上一篇找代码
《MapReduce-xml文件的处理-定制InputFormat及定制RecordReader》。InputFormat、RecordReader、mapper的代码在这
里就不贴出来了。
定制步骤:
扩展OutputFormat和RecordWriter这两类或其子类,其功能是:
OutputFormat用于验证数据接收器的属性,RecordWriter用于将reduce对象的输出结果导入数据接收器中。
首先扩展OutputFormat类其要实现的内容为:
1.public abstract class OutputFormat<K, V>
K,V为定义reduce输入键和值的类型
2.public abstract RecordWriter<K, V> getRecordWriter(TaskAttemptContext context ) throws IOException, InterruptedException;
创建一个RecordWriter实例将数据写入到目标
3.public abstract void checkOutputSpecs(JobContext context ) throws IOException, InterruptedException;
验证与MapReduce作业相关联的输出信息是否下确
4.public abstract OutputCommitter getOutputCommitter(TaskAttemptContext context ) throws IOException, InterruptedException;
获取相关OutputCommitter。当所有任务成功和作业完成后,OutputCommitters负责在最后将结果输出
然后扩展RecordWriter类,其实现的内容为:
1.public abstract class RecordWriter<K, V>
K,V为定义reduce输入键和值的类型
2.public abstract void write(K key, V value ) throws IOException, InterruptedException;
将一个逻辑键/值对写到接收器。
3.public abstract void close(TaskAttemptContext context ) throws IOException, InterruptedException;
清理任何与目标数据接收器相关的资源

定制OutputFormat:这里是扩展OutputFormat的子类FileOutputFormat

import java.io.DataOutputStream;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.ReflectionUtils;

public class XMLOutputFormat extends FileOutputFormat<Text, Text> {
	@Override
	public RecordWriter<Text, Text> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
		/**
		 * 为创建FSDataOutputStream做准备,判断是否设置了输出压缩
		 * 如果有提取扩展名
		 */
		Configuration conf = job.getConfiguration();
		boolean isCompressed = getCompressOutput(job);
		CompressionCodec codec = null;
		String extension = "";
		if (isCompressed) {
			Class<? extends CompressionCodec> codecClass = getOutputCompressorClass(job, GzipCodec.class);
			codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, conf);
			extension = codec.getDefaultExtension();
		}
		Path file = getDefaultWorkFile(job, extension);
		FileSystem fs = file.getFileSystem(conf);
		/**
		 * 创建RecordWriter,并把准备好的输出流传入RecordWriter以便其输出定制格式换
		 * key,value到指定的文件中
		 */
		if (!isCompressed) {
			FSDataOutputStream fileOut = fs.create(file, false);
			return new XMLRecordWriter(fileOut);
		} else {
			FSDataOutputStream fileOut = fs.create(file, false);
			return new XMLRecordWriter(new DataOutputStream( codec.createOutputStream(fileOut)));
		}
	}
}
定制RecordWriter:

import java.io.DataOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

public class XMLRecordWriter extends RecordWriter<Text, Text> {
	protected DataOutputStream out;
	private static final String utf8 = "UTF-8";
	private static final byte[] newline;
	private String nameTag;
	private String valueTag;
	private Text key_ = new Text();
	private Text value_ = new Text();
    static {
      try {
    	  /**
    	   * 定义换行符
    	   */
        newline = "\n".getBytes(utf8);
      } catch (UnsupportedEncodingException uee) {
        throw new IllegalArgumentException("can't find " + utf8 + " encoding");
      }
    }
	@Override
	public synchronized void close(TaskAttemptContext arg0) throws IOException,
			InterruptedException {
		out.close();
	}
	/**
	 * 实现输出定制的核心方法,在reduce调用write方法后,根据传入的key,value
	 * 来做相应形式的输出
	 */
	@Override
	public synchronized void write(Text key, Text value) throws IOException,
			InterruptedException {
		boolean nullKey = key == null; 
		boolean nullValue = value == null;
		/**
		 * 判断key,value是否都为空如果都为空则不输出
		 */
		if (nullKey && nullValue) {
			return;
		}
		/**
		 * 如果key不为空怎么输出
		 */
		if (!nullKey) {
			nameTag = "<name>" + key.toString() +"</name>";
			key_.set(nameTag.getBytes());
			writeObject(key_);
		}
		if (!(nullKey || nullValue)) {
			out.write(newline);
		}
		/**
		 * 如果value不为空怎么输出
		 */
		if (!nullValue) {
			valueTag = "<value>" + value.toString() + "</value>";
			value_.set(valueTag.getBytes());
			writeObject(value_);
		}
		out.write(newline);
	}
	/**
	 * 调用以下方法把对象写入HDFS
	 * @param o
	 * @throws IOException
	 */
	private void writeObject(Object o) throws IOException {
		if (o instanceof Text) {
			Text to = (Text) o;
			out.write(to.getBytes(), 0, to.getLength());
		} else {
			out.write(o.toString().getBytes(utf8));
		}
	}
	public XMLRecordWriter(DataOutputStream out ) {
		this.out = out;
	}
}
reduce阶段:
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class XMLReducer extends Reducer<Text, Text, Text, Text>{
	private Text val_ = new Text();
	private StringBuffer sb = new StringBuffer();
	@Override
	protected void reduce(Text key, Iterable<Text> value, Context context)
			throws IOException, InterruptedException {
		for(Text val: value) {
			//倒序的处理也可以放到RecordWriter中去实现
			sb.append(val.toString());
			val_.set(sb.reverse().toString());
			context.write(key, val_);
			sb.delete(0, sb.length());
		}
	}
}
启动函数:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class JobMain {
	public static void main(String[] args) throws Exception{
		Configuration configuration = new Configuration();
		configuration.set("key.value.separator.in.input.line", " ");
		configuration.set("xmlinput.start", "<property>");
		configuration.set("xmlinput.end", "</property>");
		Job job = new Job(configuration, "xmlread-job");
		job.setJarByClass(JobMain.class);
		job.setMapperClass(XMLMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);
		//设置输入格式处理类
		job.setInputFormatClass(XMLInputFormat.class);
		job.setNumReduceTasks(1);
		job.setReducerClass(XMLReducer.class);
		//设置输出格式处理类
		job.setOutputFormatClass(XMLOutputFormat.class);
		FileInputFormat.addInputPath(job, new Path(args[0]));
		Path output = new Path(args[1]);
		FileOutputFormat.setOutputPath(job, output);
		output.getFileSystem(configuration).delete(output, true);
		System.exit(job.waitForCompletion(true) ? 0: 1);
	}
}
运行结果:

MapReduce-XML处理-定制OutputFormat及定制RecordWriter_第1张图片
结论:

这一个实例是对上一篇博客《MapReduce-XML处理-定制InputFormat及定制RecordReader》的一个扩展,这里没有贴出Mapper,InputFormat以及RecordReader的代码,如果要运行出结果map端的实现代码请参考上一篇代码。下一篇会说明mapreduce中join的的实现。

你可能感兴趣的:(mapreduce,hadoop)