环境:
Eclipse版本:MyEclipse6.5.1
Hadoop版本:hadoop-1.2.1
1.安装MyEclipse后,创建一个java项目
File->New->Java Project
输入项目名称,确定
2.导入hadoop所有包
解压hadoop-1.2.1.tar(E:\software\share\hadoop-1.2.1)
把E:\software\share\hadoop-1.2.1下
和E:\software\share\hadoop-1.2.1\lib下的jar包都导入到项目里
方法如下:
点中项目根右键->Properties->JavaPath->Libraries->Add External JARs
3.确认jre为6.0以上版本
我的MyEclipse6.5.1版本开始默认使用jre5.0版本,因hadoop-1.2.1需要jre 6.0以上版本,所执行程序时报错:
Bad version number in .class file (unableto load class ***)
更改jre版本方法
Windows->Preference->Java->InstalledJREs àadd
4.修改FileUtil.java文件
这时在创建一个测试WordCount的mapreduce程序时,同样遇到了下面的问题
13/12/13 22:58:49 WARNutil.NativeCodeLoader: Unable to load native-hadoop library for yourplatform... using builtin-java classes where applicable
13/12/13 22:58:49 ERRORsecurity.UserGroupInformation: PriviledgedActionException as:licz cause:java.io.IOException: Failed to set permissions of path:\tmp\hadoop-licz\mapred\staging\licz1853164772\.staging to 0700
Exception in thread"main" java.io.IOException: Failed to set permissions of path:\tmp\hadoop-licz\mapred\staging\licz1853164772\.staging to
......
解决办法:
修改E:\software\share\hadoop-1.2.1\src\core\org\apache\hadoop\fs\FileUtil.java文件
注释掉下面的内容
685 private static voidcheckReturnValue(boolean rv, File p,
686 FsPermission permission
687 ) throws IOException {
688 /*if (!rv) {
689 throw new IOException("Failed toset permissions of path: " + p +
690 " to " +
691 String.format("%04o", permission.toShort()));
692 }*/
693 }
然后在Mapreduce1/scr新建一个org.apache.hadoop.fs包,把FileUtil.java文件拷到这个包的下面(在eclipse里直接粘贴就可以)
再次编译WordCount.java程序没有报错
import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; importorg.apache.hadoop.mapred.FileOutputFormat; importorg.apache.hadoop.mapred.JobClient; importorg.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; importorg.apache.hadoop.mapred.Mapper; importorg.apache.hadoop.mapred.OutputCollector; importorg.apache.hadoop.mapred.Reducer; importorg.apache.hadoop.mapred.Reporter; importorg.apache.hadoop.mapred.TextInputFormat; importorg.apache.hadoop.mapred.TextOutputFormat; public class WordCount { public static class WordCountMapper extends MapReduceBase implementsMapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value,OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { StringTokenizer itr = newStringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, one); } } } public static class WordCountReducer extends MapReduceBase implementsReducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterator<IntWritable>values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum +=values.next().get(); } result.set(sum); output.collect(key, result); } } public static void main(String[] args) throws Exception { String input = "hdfs://192.168.2.100:9000/user/licz/hdfs/o_t_account"; String output = "hdfs://192.168.2.100:9000/user/licz/hdfs/o_t_account/result"; JobConf conf = new JobConf(WordCount.class); conf.setJobName("WordCount"); conf.addResource("classpath:/hadoop/core-site.xml"); conf.addResource("classpath:/hadoop/hdfs-site.xml"); conf.addResource("classpath:/hadoop/mapred-site.xml"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(WordCountMapper.class); conf.setCombinerClass(WordCountReducer.class); conf.setReducerClass(WordCountReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input)); FileOutputFormat.setOutputPath(conf,new Path(output)); JobClient.runJob(conf); System.exit(0); } }
注意:
在windows上使用eclipse用户要与hadoop服务器上安装hadoop的用户名一致,这样才能正常运行,否则会出现没有权限创建目录的报错。
如hadoop安装在了linux服务器的licz用户下,我必需在windows的上的licz用户下使用eclipse开发程序。
这样,我们就可以在eclipse上开发mapreduce程序了。
感谢 吕双平 同学的帮助
参考刘丹:http://blog.fens.me/hadoop-maven-eclipse/