- 基于大模型的地中海贫血全流程预测与治疗管理研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与目标1.3研究方法与数据来源二、地中海贫血概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征2.4临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于地中海贫血预测的优势四、术前风险预测与手术方案制定4.1术前风险因素分析4.2大模型预测模型构建与验证4.3根据预测制定个性化手术方案五、
- 2025.06.11华为暑期实习机试真题【物流运输】Java/Python/C++/JS/C 实现
MISAYAONE
python华为java华为暑期实习机试c++
目录题目思路Code题目物流公司每天都要处理很多物流的运输工作,整个城市共有N个地点。共有N-1条公路,每2个地点之间都能通过公路连通。物流公司总部位于1号地点。今天有一辆物流运偷车共有M条物流运输任务,物流运输车每天的工作流程如下:先要从总部出发去收取所有的寄件货物,收到所有货物后回到总部扫描货物,再从总部出发将货物送至所有的送件地址,送完后最终回到总部,算作完成了今天的运输工作,请问该辆物流运
- Y-Combinator推导的Golang描述
武昌库里写JAVA
面试题汇总与解析springbootvue.js宠物管理课程设计java
缘起在做计算的本质指称语义的时候,遇到了需要在Python匿名递归调用。Python的lambda表达式本身不支持,需要借助Y-Combinator技术实现。于是研究了下Y-Combinator。中文世界了很多Blog介绍和推导Y-Combinator的文章。然而大部分的文章都省略了推导的关键步骤和推导的依据。仿佛读者都默认已经懂得Y-Combinator了。最后我在Youtube上找到了Ruby
- (论文总结)思维链激发LLM推理能力
靈镌sama
论文解读人工智能
研究背景&动机背景:扩大模型规模已被证实具有提升模型性能和模型效率的功效,但是LLM对于完成推理、算术任务仍有较大不足。动机:从之前的应用和研究中得知,可以用生成自然语言解释、使用神经符号等形式语言的方法来提高大模型的算术推理能力,当时采用了从头预训练和微调模型的方法,耗费的成本较多;而且大模型具有根据少量文本提示进行上下文少样本学习的能力,使用少量输入输出示例即可提高LLM的推理性能,而不必对单
- 基于MATLAB平台设计并实现自适应噪声抵消器(Adaptive Noise Canceller, ANC)
AI Dog
自动控制matlab自适应噪声抵消器ANC信号去噪
本课题旨在基于MATLAB平台设计并实现自适应噪声抵消器(AdaptiveNoiseCanceller,ANC),以有效去除信号中的背景噪声,提升语音、医疗或通信系统中的信噪比。系统采用自适应滤波算法,如最小均方误差(LMS)或归一化LMS(NLMS)算法,通过参考噪声信号估计并抵消主通道信号中的噪声成分,实现动态降噪。研究内容包括信号采集与仿真建模、自适应滤波器结构设计、算法参数调整及降噪性能评
- 如果用于AI评课系统的话——五款智能体比较
东方-教育技术博主
人工智能应用人工智能
你目前的项目特点是:已经具备了课堂文本分析、大模型对话系统、课堂视频分析的技术模块;计划通过智能体调用你现有的Python分析脚本,实现数据分析、自动可视化,并与教师互动;更强调多智能体协作、流程灵活编排,以及循证研究的交互分析。因此,我们重点考量生态成熟度、流程编排能力、多智能体协作能力、易用性四个维度。下面逐个分析你提到的框架:智能体框架综合对比分析:框架生态成熟度多智能体能力流程编排能力易用
- 详解MATLAB/Simulink通信系统建模与仿真代码及PPT
甄亚凌
详解MATLAB/Simulink通信系统建模与仿真代码及PPT项目地址:https://gitcode.com/open-source-toolkit/376e9欢迎来到这个专注于通信系统建模与仿真的开源资源库。本仓库致力于为MATLAB与Simulink的学习者和研究者提供详尽、实用的教学资源,特别是针对通信系统领域的实践者。通过这一平台,您将获取到全面覆盖各章节的经典案例,不仅包含精心编写的
- IT 行业深度洞察:从技术革命到产业重构的全景图谱
XQR.小白
重构
摘要本文系统梳理IT行业的发展脉络,深入剖析云计算、人工智能、大数据、物联网等核心技术的演进逻辑与协同效应,揭示IT产业在数字化转型浪潮中的生态重构与价值创造。通过典型案例分析与数据支撑,探讨行业面临的技术挑战、伦理困境与全球化竞争格局,展望IT技术如何持续驱动社会变革与产业升级。全文结合2025年最新技术动态与市场趋势,为从业者、投资者与研究者提供兼具理论深度与实践指导的行业参考。目录摘要一、I
- 深度学习流体力学【干货】
人工智能交叉前沿技术,
人工智能深度学习python机器学习
深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相
- 【Linux】写时拷贝——干货解析
代码程序猿RIP
Linuxlinux运维服务器
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、写时拷贝核心概念1.什么是写时拷贝?2.COW解决的问题二、写时拷贝工作原理1.内存管理基础结构2.COW工作流程3.页表状态变化图示初始状态(共享只读)子进程写入后(写时拷贝)三、写时拷贝的优势分析1.性能优势对比2.实际性能数据3.资源利用率提升四、内核实现深度解析1.COW核心代码逻辑2.关键数据结构五、应用场景与最
- pwn手记录题3
前言:研究生的生活很充实(忙,大概三年我再也没有时间去认真做题了以下是最近比赛的遇到的题目。仅记录脚本,细节不会再核实了(没时间(;´༎ຶД༎ຶ`))可能以后不太会触碰CTF比赛了强网杯-baby_heapfrompwnimport*context(os='linux',arch='amd64',log_level='debug')binary='./pwn'r=process(binary)el
- 在股市中寻找志同道合的朋友
niuniu15816888
财经社交大数据
作为一名普通的股票投资者,我在这条路上已经走了五年。从最初的懵懂无知到现在能独立分析行情,我深深体会到:**投资不是一个人的战斗,找到志同道合的伙伴能让这条路走得更远**。今天,我想和大家分享一些我在投资社交中的真实感悟。一、为什么我们需要投资社交?记得刚开始炒股时,我总是一个人盯着K线图发呆。直到有一天,我在一个股票论坛上认识了几位同样喜欢研究新能源板块的朋友,我们组建了一个小群组。每周五晚上,
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- Ubuntu下使用ffmpeg封装h264裸流为MP4文件
最近在研究ffmpeg封装h264裸流为MP4相关问题,这里需要解释下为什么要封装h264视频,通过编码器得到的h264视频流仅仅是裸流,只包含一些流的头信息和视频数据,没有时间戳的概念,所以使用播放器播放h264视频时,会出现播放速度不正常的现象(我遇到的是快进现象),所以将h264封装成MP4格式可以添加时间戳的信息进去,即可使用播放器正常播放视频。参考网上的代码(https://blog.c
- Paper Reading《SoK: Prudent Evaluation Practices for Fuzzing》
小苑同学
安全性测试网络安全
论文链接:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646824IEEESSP20241Introduction(背景意义)模糊测试是发现软件漏洞的高效方法,被Meta、Google等企业广泛应用,且大量学术研究持续改进其技术(如覆盖反馈、领域扩展)。过去六年(2018-2023)中,顶级安全与软件工程会议上发表了超280
- 成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用
科研的力量
人工智能ChatGPTchatgpt人工智能
课程将最新的人工智能技术与实际的遥感应用相结合,提供不仅是理论上的,而且是适用和可靠的工具和方法。无论你是经验丰富的研究人员还是好奇的从业者,本课程都将为分析和解释遥感数据开辟新的、有效的方法,使你的工作更具影响力和前沿性。遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面
- 论文学习_SoK: An Essential Guide For Using Malware Sandboxes In Security Applications: Challenges, Pitfa
kitsch0x97
学习
0.文章概述恶意软件沙箱尽管在安全应用程序中带来许多优势,但其复杂的选择、配置和使用过程常让新用户不知所措,甚至可能导致错误的部署,进而对安全分析结果产生负面影响。目前,缺乏系统化的指导来帮助用户正确选择和应用沙箱工具,这种知识空白阻碍了沙箱在不同研究领域中的有效应用。为了填补这一知识空白,研究团队系统分析了84篇关于x86/64恶意软件沙箱的学术论文,并提出了一种新颖的框架,以简化沙箱组件和操作
- 扣带回灰质体积:双任务步态与痴呆发病关联的关键中介
楚山之石
学习图像处理科技人工智能mr
扣带回灰质体积介导双任务步态与痴呆发病的关联研究背景与核心问题随着全球人口老龄化,痴呆已成为重大公共卫生挑战,而轻度认知障碍(MCI)作为正常认知与痴呆的过渡状态,是早期干预的关键窗口。双任务步态测试(行走时执行认知任务)中出现的高双任务成本(DTC,即步态速度较单任务时减慢≥20%),已被证实与MCI患者进展为痴呆的风险升高相关,但这一关联的神经机制尚不明确。本研究旨在探索脑灰质体积减少和运动皮
- CLIP之后,多模态模型将如何进化?三大技术路径解析
老周聊AI
AI大模型人工智能MCP机器学习神经网络深度学习AI大模型大模型训练框架
多模态学习的革命:CLIP技术深度解析关注老周不迷路本文较长,建议点赞收藏以免遗失。由于文章篇幅有限,更多涨薪知识点,也可在主页查看最新AI大模型应用开发学习资料免费领取引言:多模态学习的时代来临在人工智能领域,多模态学习正成为最具前景的研究方向之一。传统AI系统通常专注于单一模态(如纯文本或纯图像),而人类认知的本质却是多模态的——我们通过视觉、听觉、触觉等多种感官协同理解世界。OpenAI于2
- workflow的可编排协作模式
思绪漂移
人工智能agentworkflow模式
Workflow的可编排协作模式在AI工作流设计中,协作模式的选择直接影响系统效率和结果质量。本文将系统分析6种主流协作模式,探讨选择方案与适合场景。一、传统单一模式特点:使用标准框架进行线性编排所有任务按固定顺序执行适合简单、确定性强的流程适用场景:规则明确、步骤固定的业务流程自动化二、路由模式核心机制:LLM先识别用户意图根据意图路由到对应处理模块优势:意图识别准确率高资源分配精准典型应用:客
- 小红书笔记详情API接口实战:内容数据获取与分析的利器
在数字化时代,数据成为了一种无形的财富,其背后的价值越来越被重视。小红书,作为国内知名的社区分享平台,聚集了大量优质的内容和用户数据。对于企业、个人或者研究机构而言,获取并分析小红书上的笔记详情数据,不仅可以了解用户的行为和兴趣,还可以为决策提供有力的数据支持。本文将介绍如何通过小红书的API接口获取笔记详情数据,并对其进行深入分析,同时附上实战代码,帮助读者更好地理解和应用。二、小红书API接口
- 结构性变革与新兴机遇
倒霉男孩
经济学
近年来,全球就业市场正经历深刻的结构性变革。受技术进步、产业升级、人口结构变化及全球经济格局调整的影响,传统就业模式被重塑,新的职业机会不断涌现。本文将分析当前就业市场的主要趋势,并探讨其对劳动者、企业和政策制定者的启示。###**一、技术驱动下的就业结构变化**1.**人工智能与自动化替代部分传统岗位**-麦肯锡全球研究院预测,到2030年,全球约14%的劳动者(3.75亿人)可能因自动化技术而
- Java线程池原理深度解析:从设计思想到源码实现
北辰alk
javajavapython开发语言
文章目录一、线程池概述1.1为什么需要线程池1.2Java线程池框架二、线程池核心参数2.1关键参数详解2.2工作队列类型2.3拒绝策略三、线程池工作流程3.1流程图解3.2流程说明四、源码深度解析4.1核心数据结构4.2状态控制机制4.3Worker线程实现4.4任务执行核心方法4.5任务获取逻辑五、线程池使用实践5.1创建线程池的正确方式5.2线程池监控5.3合理配置参数六、常见问题与解决方案
- MySQL数据库核心技术深度解析:SQL语句最佳实践与性能优化指南
有趣的灵魂465
mysql
MySQL数据库大师之路:从语法精要到高阶优化全攻略一、开篇:构建系统化的MySQL知识体系在完成《MySQL数据库技术》课程学习后,我通过300+小时的实战演练和源码研究,形成了这套覆盖MySQL5.7/8.0核心技术的知识体系。本文不仅包含标准SQL语法,更将深入InnoDB存储引擎原理、索引实现机制和事务隔离级别的底层实现,帮助开发者跨越从"会写SQL"到"精通数据库"的鸿沟。二、数据库设计
- 六自由度按摩机器人 MATLAB 仿真
本课题围绕六自由度(6-DOF)按摩机器人展开,旨在通过MATLAB仿真平台对其机械结构、运动学特性和控制策略进行建模与分析。六自由度机器人具备空间位置和姿态的全面调节能力,可实现复杂的按摩轨迹和多角度作用力控制。研究内容包括机器人正/逆运动学建模、轨迹规划(如五次多项式插值、笛卡尔路径)、动力学建模(使用Lagrange或Newton-Euler方法)以及基于PID或自适应控制算法的控制系统设计
- AI工作流平台对比分析
come11234
Ai人工智能
以下是和「扣子工作流」(KoFlow)类似的AI工作流平台对比分析,涵盖主流工具的核心特点、使用方式、优缺点及区别:一、主流工作流平台分类平台类型核心定位代表用户扣子(KoFlow)低代码AI流程中文场景优化,深度集成大模型中文开发者/企业LangChain代码框架开发者灵活构建AI链Python开发者/AI工程师LlamaIndex数据增强框架企业级RAG(检索增强生成)数据工程师/知识库应用M
- 扣子工作流能实现哪些功能和单纯的提示词问大模型的区别
好的,我们来详细解释一下扣子工作流(KoFlow)的功能、优势以及与单纯使用提示词调用大模型的区别。核心概念:单纯提示词调用大模型:用户直接编写一段文本(提示词)发送给大模型,大模型根据这个提示词一次性生成回复。整个过程是“单次交互”。扣子工作流:用户构建一个可视化或代码化的流程。这个流程可以包含多个步骤,每个步骤可以执行不同的任务(调用大模型、调用API、执行代码、判断条件、循环等),步骤之间可
- Python爬虫(57)Python数据可视化全攻略:Matplotlib从入门到三维动态图表(8000字实战教程)
一个天蝎座白勺程序猿
Python爬虫入门到高阶实战python爬虫信息可视化
目录背景与需求分析第一章:Matplotlib基础与核心工作流1.1环境配置与基础架构1.2基础图表类型实战1.2.1折线图进阶1.2.2分组柱状图第二章:高阶可视化技术2.1子图矩阵与多面板布局2.2动态可视化与动画第三章:行业案例实战案例1:电商用户行为分析案例2:医疗影像数据可视化第四章:可视化美学与工程优化4.1配色方案实战4.2百万级数据渲染优化第五章:交互式扩展方案5.1Matplot
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那