android4.2.2 Camera HAL的结构

 

本文均属自己阅读源码的点滴总结,转账请注明出处谢谢。

欢迎和大家交流。qq:1037701636 email:[email protected]

Android源码版本Version:4.2.2; 硬件平台 全志A31

这里单独以preview的控制和数据流来进行相关的camera的调用处理,主要先引入Camera 的HAL层的处理结构。

调用还是先从camera的JNI和HAL两个方面来分析:

step1:启动预览startPreview()

// start preview mode
status_t Camera::startPreview()
{
    ALOGV("startPreview");
    sp <ICamera> c = mCamera;
    if (c == 0) return NO_INIT;
    return c->startPreview();
}

这里的mCamera是之前connect请求CameraService建立,该类是匿名的BpCamera直接和CameraService处的CameraClient(该类继承了CameraService的内部类Client,Client继承了BnCamera)进行交互。

step2:调用CameraService侧的CameraClient里的startpreview()

status_t CameraClient::startPreviewMode() {
    LOG1("startPreviewMode");
    status_t result = NO_ERROR;

    // if preview has been enabled, nothing needs to be done
    if (mHardware->previewEnabled()) {//使能预览
        return NO_ERROR;
    }

    if (mPreviewWindow != 0) {
        native_window_set_scaling_mode(mPreviewWindow.get(),
                NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
        native_window_set_buffers_transform(mPreviewWindow.get(),
                mOrientation);
    }
    mHardware->setPreviewWindow(mPreviewWindow);//mPreviewWindow为一个本地窗口ANativeWindow
    result = mHardware->startPreview();

    return result;
}

这里出现了一个mPreviewWIndow对象,其类为ANativeWindow,很熟悉的一个应用端的本地窗口。那么这个窗口的初始化过程呢,即这个变量是哪里来的?

step3:探秘本地预览窗口mPreviewWinodw对象

java处:

   public final void setPreviewDisplay(SurfaceHolder holder) throws IOException {
        if (holder != null) {
            setPreviewDisplay(holder.getSurface());
        } else {
            setPreviewDisplay((Surface)null);
        }
    }

这个getSurface()的获取调用如下

static sp<Surface> getSurface(JNIEnv* env, jobject surfaceObj) {
    sp<Surface> result(android_view_Surface_getSurface(env, surfaceObj));
    if (result == NULL) {
        /*
         * if this method is called from the WindowManager's process, it means
         * the client is is not remote, and therefore is allowed to have
         * a Surface (data), so we create it here.
         * If we don't have a SurfaceControl, it means we're in a different
         * process.
         */

        SurfaceControl* const control = reinterpret_cast<SurfaceControl*>(
                env->GetIntField(surfaceObj, gSurfaceClassInfo.mNativeSurfaceControl));
        if (control) {
            result = control->getSurface();
            if (result != NULL) {
                result->incStrong(surfaceObj);
                env->SetIntField(surfaceObj, gSurfaceClassInfo.mNativeSurface,
                        reinterpret_cast<jint>(result.get()));
            }
        }
    }
    return result;
}

看到这里可以回顾到从Android Bootanimation理解SurfaceFlinger的客户端建立这一文中,对客户端的一个Surface建立,这里的过程几乎一摸一样,最终返回一个客户端需要的Surface用来绘图使用。

而这个surface最终也将进一步传递到JNI,HAL供实时的预览等。

JNI处:

static void android_hardware_Camera_setPreviewDisplay(JNIEnv *env, jobject thiz, jobject jSurface)
{
    ALOGV("setPreviewDisplay");
    sp<Camera> camera = get_native_camera(env, thiz, NULL);
    if (camera == 0) return;

    sp<Surface> surface = NULL;
    if (jSurface != NULL) {
        surface = reinterpret_cast<Surface*>(env->GetIntField(jSurface, fields.surface));
    }
    if (camera->setPreviewDisplay(surface) != NO_ERROR) {
        jniThrowException(env, "java/io/IOException", "setPreviewDisplay failed");
    }
}

来到JNI层的实现,获取之前由CameraService创作的Camera对象,该类继承了BpCamera用于进一步和CameraService端的CameraClient进行交互。

step4:CameraService处的响应

status_t BnCamera::onTransact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
.....
        case SET_PREVIEW_DISPLAY: {
            ALOGV("SET_PREVIEW_DISPLAY");
            CHECK_INTERFACE(ICamera, data, reply);
            sp<Surface> surface = Surface::readFromParcel(data);
            reply->writeInt32(setPreviewDisplay(surface));
            return NO_ERROR;
        } break;
......
        case START_PREVIEW: {
            ALOGV("START_PREVIEW");
            CHECK_INTERFACE(ICamera, data, reply);
            reply->writeInt32(startPreview());//调用服务端的cameraclient处的函数,为该类的派生类
            return NO_ERROR;
        } break;
}

由于之前connect写入的Binder本地实体类对象为CameraClient,则由该类对象的成员函数来实现。

status_t CameraClient::setPreviewDisplay(const sp<Surface>& surface) {
    LOG1("setPreviewDisplay(%p) (pid %d)", surface.get(), getCallingPid());

    sp<IBinder> binder(surface != 0 ? surface->asBinder() : 0);
    sp<ANativeWindow> window(surface);
    return setPreviewWindow(binder, window);
}
再调用SetPreviewWindow(),传入的Binder分别为Surface对象和一个ANativeWindow对象window。
status_t CameraClient::setPreviewWindow(const sp<IBinder>& binder,
        const sp<ANativeWindow>& window) {
    Mutex::Autolock lock(mLock);
    status_t result = checkPidAndHardware();
    if (result != NO_ERROR) return result;

    // return if no change in surface.
    if (binder == mSurface) {
        return NO_ERROR;
    }

    if (window != 0) {
        result = native_window_api_connect(window.get(), NATIVE_WINDOW_API_CAMERA);
        if (result != NO_ERROR) {
            ALOGE("native_window_api_connect failed: %s (%d)", strerror(-result),
                    result);
            return result;
        }
    }

    // If preview has been already started, register preview buffers now.
    if (mHardware->previewEnabled()) {
        if (window != 0) {
            native_window_set_scaling_mode(window.get(),
                    NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
            native_window_set_buffers_transform(window.get(), mOrientation);
            result = mHardware->setPreviewWindow(window);
        }
    }

    if (result == NO_ERROR) {
        // Everything has succeeded.  Disconnect the old window and remember the
        // new window.
        disconnectWindow(mPreviewWindow);
        mSurface = binder;// This is a binder of Surface or SurfaceTexture.
        mPreviewWindow = window;//获取了预览的数据窗口
    } else {
        // Something went wrong after we connected to the new window, so
        // disconnect here.
        disconnectWindow(window);
    }

    return result;
}

调用mHardware这个硬件接口将本地的一个Window窗口传递到HAL层。并将这个windw记录到mPreviewWindow中。

Camera的HAL相关的具体实现结构

到了这里已经非讲不可的是mHardware啦,因为这个接口类将不得不访问HAL层。如最之前的result = mHardware->startPreview();函数。

    status_t startPreview()
    {
        ALOGV("%s(%s)", __FUNCTION__, mName.string());
        if (mDevice->ops->start_preview)
            return mDevice->ops->start_preview(mDevice);
        return INVALID_OPERATION;
    }

这是一个典型的底层设备的调用。因此将和大家分享Camera的HAL层的相关操作。

 

1.参考当前平台的Camera源码,CameraService启动时会调用Camera的HAL模块,第一次open操作的最终调用如下:

int HALCameraFactory::device_open(const hw_module_t* module,
                                       const char* name,
                                       hw_device_t** device)//最先被framework层调用
{
    /*
     * Simply verify the parameters, and dispatch the call inside the
     * HALCameraFactory instance.
     */

.....

    return gEmulatedCameraFactory.cameraDeviceOpen(atoi(name), device);
}

该Camera模块中gEmulatedCameraFactory是一个静态的全局对象。来看该对象的构造过程:

HALCameraFactory::HALCameraFactory()
        : mHardwareCameras(NULL),
          mAttachedCamerasNum(0),
          mRemovableCamerasNum(0),
          mConstructedOK(false)
{
	F_LOG;

	LOGD("camera hal version: %s", CAMERA_HAL_VERSION);

    /* Make sure that array is allocated. */
    if (mHardwareCameras == NULL) {
        mHardwareCameras = new CameraHardware*[MAX_NUM_OF_CAMERAS];
        if (mHardwareCameras == NULL) {
            LOGE("%s: Unable to allocate V4L2Camera array for %d entries",
                 __FUNCTION__, MAX_NUM_OF_CAMERAS);
            return;
        }
        memset(mHardwareCameras, 0, MAX_NUM_OF_CAMERAS * sizeof(CameraHardware*));
    }

    /* Create the cameras */
	for (int id = 0; id < MAX_NUM_OF_CAMERAS; id++)
	{
		// camera config information
		mCameraConfig[id] = new CCameraConfig(id);//读取camera配置文件.cfg
		if(mCameraConfig[id] == 0)
		{
			LOGW("create CCameraConfig failed");
		}
		else
		{
			mCameraConfig[id]->initParameters();
			mCameraConfig[id]->dumpParameters();
		}
	
		mHardwareCameras[id] = new CameraHardware(&HAL_MODULE_INFO_SYM.common, mCameraConfig[id]);//创建CameraHardware
		if (mHardwareCameras[id] == NULL)
		{
	        mHardwareCameras--;
	        LOGE("%s: Unable to instantiate fake camera class", __FUNCTION__);
			return;
	    }
	}

	// check camera cfg
	if (mCameraConfig[0] != NULL)
	{
		mAttachedCamerasNum = mCameraConfig[0]->numberOfCamera();

		if ((mAttachedCamerasNum == 2)
			&& (mCameraConfig[1] == NULL))
		{
			return;
		}
	}

    mConstructedOK = true;
}

这个全局对象是新建并初始化CameraHardware对象,而这里的Camera支持数目为2个。CameraHardware表示的是一个完整的摄像头类型,该类继承了camera_device这个结构体类:

CameraHardware::CameraHardware(struct hw_module_t* module, CCameraConfig* pCameraCfg)
        : mPreviewWindow(),
          mCallbackNotifier(),
          mCameraConfig(pCameraCfg),
          mIsCameraIdle(true),
          mFirstSetParameters(true),
          mFullSizeWidth(0),
          mFullSizeHeight(0),
          mCaptureWidth(0),
          mCaptureHeight(0),
          mVideoCaptureWidth(0),
          mVideoCaptureHeight(0),
          mUseHwEncoder(false),
          mFaceDetection(NULL),
          mFocusStatus(FOCUS_STATUS_IDLE),
          mIsSingleFocus(false),
          mOriention(0),
          mAutoFocusThreadExit(true),
          mIsImageCaptureIntent(false)
{
    /*
     * Initialize camera_device descriptor for this object.
     */
	F_LOG;

    /* Common header */
    common.tag = HARDWARE_DEVICE_TAG;
    common.version = 0;
    common.module = module;
    common.close = CameraHardware::close;

    /* camera_device fields. */
    ops = &mDeviceOps;
    priv = this;

	// instance V4L2CameraDevice object
	mV4L2CameraDevice = new V4L2CameraDevice(this, &mPreviewWindow, &mCallbackNotifier);//初始化V4L2CameraDevice
	if (mV4L2CameraDevice == NULL)
	{
		LOGE("Failed to create V4L2Camera instance");
		return ;
	}

	memset((void*)mCallingProcessName, 0, sizeof(mCallingProcessName));

	memset(&mFrameRectCrop, 0, sizeof(mFrameRectCrop));
	memset((void*)mFocusAreasStr, 0, sizeof(mFocusAreasStr));
	memset((void*)&mLastFocusAreas, 0, sizeof(mLastFocusAreas));

	// init command queue
	OSAL_QueueCreate(&mQueueCommand, CMD_QUEUE_MAX);
	memset((void*)mQueueElement, 0, sizeof(mQueueElement));

	// init command thread
	pthread_mutex_init(&mCommandMutex, NULL);
	pthread_cond_init(&mCommandCond, NULL);
	mCommandThread = new DoCommandThread(this);
	mCommandThread->startThread();
	
	// init auto focus thread
	pthread_mutex_init(&mAutoFocusMutex, NULL);
	pthread_cond_init(&mAutoFocusCond, NULL);
	mAutoFocusThread = new DoAutoFocusThread(this);
}

这里对这个CameraHardware对象进行了成员变量的初始化,其中包括camera_device_t结构体的初始化,其中ops是对Camera模块操作的核心所在。

typedef struct camera_device {
    /**
     * camera_device.common.version must be in the range
     * HARDWARE_DEVICE_API_VERSION(0,0)-(1,FF). CAMERA_DEVICE_API_VERSION_1_0 is
     * recommended.
     */
    hw_device_t common;
    camera_device_ops_t *ops;
    void *priv;
} camera_device_t;

这里有出息了一个V4L2CameraDevice对象,真正的和底层内核打交道的地方,基于V4L2的架构实现。

V4L2CameraDevice::V4L2CameraDevice(CameraHardware* camera_hal,
								   PreviewWindow * preview_window, 
    							   CallbackNotifier * cb)
    : mCameraHardware(camera_hal),
.......
{
	LOGV("V4L2CameraDevice construct");

	memset(&mHalCameraInfo, 0, sizeof(mHalCameraInfo));
	memset(&mRectCrop, 0, sizeof(Rect));

	// init preview buffer queue
	OSAL_QueueCreate(&mQueueBufferPreview, NB_BUFFER);//建立10个预览帧
	OSAL_QueueCreate(&mQueueBufferPicture, 2);//建立2个图片帧buffer
	
	// init capture thread
	mCaptureThread = new DoCaptureThread(this);
	pthread_mutex_init(&mCaptureMutex, NULL);
	pthread_cond_init(&mCaptureCond, NULL);
	mCaptureThreadState = CAPTURE_STATE_PAUSED;
	mCaptureThread->startThread();//启动视频采集

	// init preview thread
	mPreviewThread = new DoPreviewThread(this);
	pthread_mutex_init(&mPreviewMutex, NULL);
	pthread_cond_init(&mPreviewCond, NULL);
	mPreviewThread->startThread();//启动预览

	// init picture thread
	mPictureThread = new DoPictureThread(this);
	pthread_mutex_init(&mPictureMutex, NULL);
	pthread_cond_init(&mPictureCond, NULL);
	mPictureThread->startThread();//启动拍照
	
	pthread_mutex_init(&mConnectMutex, NULL);
	pthread_cond_init(&mConnectCond, NULL);
	
	// init continuous picture thread
	mContinuousPictureThread = new DoContinuousPictureThread(this);
	pthread_mutex_init(&mContinuousPictureMutex, NULL);
	pthread_cond_init(&mContinuousPictureCond, NULL);
	mContinuousPictureThread->startThread();//启动连续拍照
}

创建预览mQueueBufferPreview队列,初始化并启动了Camera需要的几个线程:视频采集,预览,拍照,以及连续的拍照等。 

通过以上的几个对象构造后Camera的硬件信息维护到了全局类HALCameraFactory的mHardwareCameras[id]成员变量当中。

 

在客户端的connect,最终调用HAL的cameraDeviceOpen打开真正的设备:

int HALCameraFactory::cameraDeviceOpen(int camera_id, hw_device_t** device)
{

.....
	if (!mHardwareCameras[0]->isCameraIdle()
		|| !mHardwareCameras[1]->isCameraIdle())
	{
		LOGW("camera device is busy, wait a moment");
		usleep(500000);
	}

	mHardwareCameras[camera_id]->setCameraHardwareInfo(&mHalCameraInfo[camera_id]);

	if (mHardwareCameras[camera_id]->connectCamera(device) != NO_ERROR)//连接camera硬件设备
	{
		LOGE("%s: Unable to connect camera", __FUNCTION__);
		return -EINVAL;
	}
	
	if (mHardwareCameras[camera_id]->Initialize() != NO_ERROR) //camera硬件设备参数等初始化
	{
		LOGE("%s: Unable to Initialize camera", __FUNCTION__);
		return -EINVAL;
	}
	
    return NO_ERROR;
}

初始化的流程依次调用HAL的HardwareCamera的connectCamera函数,其实这里最终的核心是返回一个camera device给上层调用camera的具体操作:最终将CameraHardware的基类camera_devcie_t返回给device。

status_t CameraHardware::connectCamera(hw_device_t** device)
{
    F_LOG;
    status_t res = EINVAL;
	
	{
		Mutex::Autolock locker(&mCameraIdleLock);
		mIsCameraIdle = false;
	}

	if (mV4L2CameraDevice != NULL)
	{
		res = mV4L2CameraDevice->connectDevice(&mHalCameraInfo);
		if (res == NO_ERROR)
		{
			*device = &common;
......
}

mV4L2CameraDevice->connectDevice(),真正的开启V4l2的相关Camera启动,内部通过openCameraDev来实现

status_t V4L2CameraDevice::connectDevice(HALCameraInfo * halInfo)
{
	F_LOG;

.....

	// open v4l2 camera device
	int ret = openCameraDev(halInfo);//调用v4l2的camera标准接口
	if (ret != OK)
	{
		return ret;
	}

	memcpy((void*)&mHalCameraInfo, (void*)halInfo, sizeof(HALCameraInfo));

.......
}

openCameraDev()函数内部的实现就是V4L2的典型的API流程,通过ioctl来完成对内核Camera视频采集的驱动的控制。该流程可以参考DM6446的视频前端VPFE驱动之ioctl控制(视频缓存区,CCDC,decoder)解析

int V4L2CameraDevice::openCameraDev(HALCameraInfo * halInfo)
{
	F_LOG;
	
	int ret = -1;
	struct v4l2_input inp;
	struct v4l2_capability cap; 

	if (halInfo == NULL)
	{
		LOGE("error HAL camera info");
		return -1;
	}
	
	// open V4L2 device
	mCameraFd = open(halInfo->device_name, O_RDWR | O_NONBLOCK, 0);
	if (mCameraFd == -1) 
	{ 
        LOGE("ERROR opening %s: %s", halInfo->device_name, strerror(errno)); 
		return -1; 
	}

	// check v4l2 device capabilities
	ret = ioctl (mCameraFd, VIDIOC_QUERYCAP, &cap); 
    if (ret < 0) 
	{ 
        LOGE("Error opening device: unable to query device."); 
        goto END_ERROR;
    } 

    if ((cap.capabilities & V4L2_CAP_VIDEO_CAPTURE) == 0) 
	{ 
        LOGE("Error opening device: video capture not supported."); 
        goto END_ERROR;
    } 
  
    if ((cap.capabilities & V4L2_CAP_STREAMING) == 0) 
	{ 
        LOGE("Capture device does not support streaming i/o"); 
        goto END_ERROR;
    } 

	if (!strcmp((char *)cap.driver, "uvcvideo"))
	{
		mIsUsbCamera = true;
	}

	if (!mIsUsbCamera)
	{
		// uvc do not need to set input
		inp.index = halInfo->device_id;
		if (-1 == ioctl (mCameraFd, VIDIOC_S_INPUT, &inp))
		{
			LOGE("VIDIOC_S_INPUT error!");
			goto END_ERROR;
		}
	}
	
	// try to support this format: NV21, YUYV
.....
}

到这里为止一共典型的Camera从应用侧到CameraService再到Camera HAL处的初始化流程基本完成。

总结下的是HAL层建立了一个基于V4L2的V4L2CameraDevice对象来完成和内核视频采集模块的互动,返回一个camera_device_t结构体对象mDevice来为后续对Camera设备的进一步控制。
 

 

 


 





 

你可能感兴趣的:(android4.2.2 Camera HAL的结构)