离散数学实践:真值表与范式

预备知识

根据合式公式的真值表与主合取范式与主析取范式的关系来求。在命题逻辑中,合式公式的真值表的应用非常广泛。列合式公式真值表的步骤如下:

  1. 找出合式公式中出现的所有命题变项。
  2. 按照二进制的顺序给出命题公式的2n种赋值。
  3. 对每个赋值按照合式公式的层次求出它的值。
  4. 所有成真赋值的合取即为主合取范式,所有成假赋值的析取即为主析取范式

熟悉真值表定义,并列出合式公式的真值表,并根据真值表的结果来判断公式的类型。

源程序参考

PropostionalLogicHeader头文件

/**************************************************************************
 * (C) Copyright 2015-2018 by Gavin  Y. Liu  All Rights Reserved.         *
 *                                                                        *
 * DISCLAIMER: The authors and publisher shall not be liable in any event * 
 * for incidental or consequential damages in connection with, or arising *
 * out of, the furnishing, performance, or use of these programs.         *
 **************************************************************************/


/* File: PropostionalLogicHeader.h
 *-------------------------------
 * This interface exports a simple symboll table abstraction
 *
 */

#ifndef _PROPOSTIONALLOGICHEADER_H_
#define _PROPOSTIONALLOGICHEADER_H_
/*
 * Constants
 *------------------
 * LengthMaxLimit  - Length Max  value for the tables
 */

#define LengthMaxLimit 100

 /*Private function prototypes*/

/*
 * Function: negation
 * Usage: negation(p);
 *-------------------
 * This funtion is an operation that takes a proposition p to another proposition "not p", 
 * written ¬p, which is interpreted intuitively as being true when p is false and false when p is true.
 */

static int negation(const int p);

/*
 * Function: conjunction
 * Usage: conjunction(p,q);
 * ---------------------------------
 * This function is an operation on two logical values, typically the values of two propositions, that 
 * produces a value of true if and only if both of its operands are true.The conjunctive identity is 1, 
 * which is to say that AND-ing an expression with 1 will never change the value of the expression. In 
 * keeping with the concept of vacuous truth, when conjunction is defined as an operator or function of 
 * arbitrary arity, the empty conjunction (AND-ing over an empty set of operands) is often defined as 
 * having the result 1.
 */

static int conjunction(const int p,const int q);

/*
 * Function: disjunction
 * Usage: disjunction(p,q);
 *----------------------------------------
 * The Function is the values of two propositions, that has a value of false if and only if both of its 
 * operands are false. More generally, a disjunction is a logical formula that can have one or more literals 
 * separated only by ORs. A single literal is often considered to be a degenerate disjunction. 
 *
 * The disjunctive identity is false, which is to say that the or of an expression with false has the same 
 * value as the original expression. In keeping with the concept of vacuous truth, when disjunction is defined 
 * as an operator or function of arbitrary arity, the empty disjunction (OR-ing over an empty set of operands) 
 * is generally defined as false.
 */

static int disjunction(const int p, const int q);

/*
 * Function: conditional
 * Usage: conditional(p,q)
 * ----------------------------------------
 * The function is The material conditional is used to form statements of the form "p→q" (termed a conditional 
 * statement) which is read as "if p then q" and conventionally compared to the English construction "If...
 * then...". But unlike as the English construction may, the conditional statement "p→q" does not specify a 
 * causal relationship between p and q and is to be understood to mean "if p is true, then q is also true" such 
 * that the statement "p→q" is false only when p is true and q is false.[1] The material conditional is also to 
 * be distinguished from logical consequence.
 */

static int conditional(const int p, const int q);

/*
 * Function:bicondtional
 * Usage: bincontional(p,q)
 * ----------------------------------------------
 * The function is the logical connective of two statements asserting "p if and only if q", where q is an 
 * antecedent and p is a consequent. This is often abbreviated p iff q. The operator is denoted using a 
 * doubleheaded arrow (↔), a prefixed E (Epq), an equality sign (=), an equivalence sign (≡), or EQV. It is 
 * logically equivalent to (p → q) ∧ (q → p), or the XNOR (exclusive nor) boolean operator. It is equivalent to 
 * "(not p or q) and (not q or p)". It is also logically equivalent to "(p and q) or (not p and not q)", meaning
 * "both or neither".
 * 
 * The only difference from material conditional is the case when the hypothesis is false but the conclusion is 
 * true. In that case, in the conditional, the result is true, yet in the biconditional the result is false.
 *
 * In the conceptual interpretation, a = b means "All a 's are b 's and all b 's are a 's"; in other words, the 
 * sets a and b coincide: they are identical. This does not mean that the concepts have the same meaning. 
 * Examples: "triangle" and "trilateral", "equiangular trilateral" and "equilateral triangle". The antecedent is 
 * the subject and the consequent is the predicate of a universal affirmative proposition.
 *
 * In the propositional interpretation, a ⇔ b means that a implies b and b implies a; in other words, that the 
 * propositions are equivalent, that is to say, either true or false at the same time. This does not mean that 
 * they have the same meaning. Example: "The triangle ABC has two equal sides", and "The triangle ABC has two 
 * equal angles". The antecedent is the premise or the cause and the consequent is the consequence. When an 
 * implication is translated by a hypothetical (or conditional) judgment the antecedent is called the hypothesis
 * (or the condition) and the consequent is called the thesis.
 */

static int biconditional(const int p, const int q);

/*
 * Function:compute
 * Usage: compute(p,q ch)
 * ----------------------------------
 */

static int compute(const int p, const int q, const char ch);

/*
 * Function: is_proposition
 * Usage: is_propositon(ch)
 * ----------------------------------
 */

static int is_proposition(const char ch);

/*
 * Function:is_LogicalConnectives
 * Usage: is_LogicalConnectives(c)
 * ----------------------------------
 */

static int is_LogicalConnectives(const char c);

/*
 * Function:get_isp
 * Usage: get_isp(ch)
 * ----------------------------------
 */

static int get_isp(const char ch);

/*
 * Function:get_icp
 * Usage: get_icp(ch)
 * ----------------------------------
 */

static int get_icp(const char ch);

/*
 * Function:to_InersePolandT
 * Usage: to_InersePolandT(*last_exp, *pre_exp)
 * -------------------------------------------
 */
static void to_InversePolandT(char *last_exp, const char *pre_exp);

/*
 * Function: add_blackets
 * Usage: add_blackets(s)
 * ----------------------------
 */

static void add_blackets(char* s);

/*
 * Function: exp_resolve
 * Usage: exp_resolve(*exp,length,(*re_exp)[LengMaxLimit],k)
 * ----------------------------
 */

static void exp_resolve(const char* exp, const int length, char (*re_exp)[LengthMaxLimit] , int k);



static void binary_inc(int* a, int length);


/*
 * Function: get_proposition
 * Usage: get_proposition(*exp,length,*p)
 * ------------------------------------------
 * The propositions in these logics are more complex. First, terms must be defined. A term is (i) a variable or 
 * (ii) a function symbol applied to the number of terms required by the function symbol's arity. For example, 
 * if + is a binary function symbol and x, y, and z are variables, then x+(y+z) is a term, which might be written 
 * with the symbols in various orders. A proposition is (i) a predicate symbol applied to the number of terms 
 * required by its arity, (ii) an operator applied to the number of propositions required by its arity, or 
 * (iii) a quantifier applied to a proposition. For example, if = is a binary predicate symbol and ∀ is a 
 * quantifier, then ∀x,y,z [(x = y) → (x+z = y+z)] is a proposition. This more complex structure of propositions 
 * allows these logics to make finer distinctions between inferences, i.e., to have greater expressive power.
 * 
 * In this context, propositions are also called sentences, statements, statement forms, formulas, and well-formed
 * formulas, though these terms are usually not synonymous within a single text. This definition treats propositions 
 * as syntactic objects, as opposed to semantic or mental objects. That is, propositions in this sense are meaningless, 
 * formal, abstract objects. They are assigned meaning and truth-values by mappings called interpretations and 
 * valuations, respectively.
 */

static int get_proposition(const char* exp, const int length, char* p);


static void proposition_ass(const char* pre_exp, int length, char *p, int* v, int n, char* last_exp);

static int bin2dec(int* v, int n);


/* Public function prototyes*/

/*
 * Function:is_wellformed
 * Usage:is_wellformed(s,length)
 * -----------------------------------
 * The formulas are inductively defined as follows:
 *   Each propositional variable is, on its own, a formula.
 *   If φ is a formula, then \lnotφ is a formula.
 *   If φ and ψ are formulas, and • is any binary connective, then ( φ • ψ) is a formula. 
 * Here • could be (but is not limited to) the usual operators ∨, ∧, →, or ↔.
 * This definition can also be written as a formal grammar in Backus–Naur form, provided the set 
 * of variables is finite.
 */

int is_wellformed(const char *s,const int length);

/*
 * Function: compute_wellformed
 * Usage: compute_wellformed(exp,length)
 * -------------------------------------------
 */

int compute_wellformed(const char* exp, const int length);

/*
 * Function: truth_table
 * Usage: truth_table(exp,length)
 * ----------------------------------
 * a truth table is composed of one column for each input variable (for example, A and B), and 
 * one final column for all of the possible results of the logical operation that the table is 
 * meant to represent (for example, A XOR B). Each row of the truth table therefore contains one 
 * possible configuration of the input variables (for instance, A=true B=false), and the result of 
 * the operation for those values. See the examples below for further clarification.
 */

void truth_table(const char* exp, const int length);

int get_main_disjunction(const char* exp, char* resu);

int get_main_conjunction( char* exp, char* resu);

void help();

#endif // end of _PROPOSTIONALLOGICHEADER_H_

PropostionalLogicSource源文件

/**************************************************************************
 * (C) Copyright 2015-2018 by Gavin  Y. Liu  All Rights Reserved.         *
 *                                                                        *
 * DISCLAIMER: The authors and publisher shall not be liable in any event * 
 * for incidental or consequential damages in connection with, or arising *
 * out of, the furnishing, performance, or use of these programs.         *
 **************************************************************************/

#include <stdio.h>
#include <stdlib.h>

#include <ctype.h>
#include <string.h>
#include <math.h>

#include "PropostionalLogicHeader.h"

/*Private functions */

//Compute testing 
static int compute(const int p, const int q, const char ch){
	switch(ch){
		case '~': 
			return negation(q);
		case '+': 
			return disjunction(p, q);
		case '*': 
			return conjunction(p, q);
		case '>': 
			return conditional(p, q);
		case '=': 
			return biconditional(p, q);
		default: 
			return -1;
	}
}

//Negation
static int negation(const int p){
	return p == 0 ? 1 : 0;
}

//Conjunction
static int conjunction(const int p, const int q){
	return (p != 0 && q != 0) ? 1 : 0;
}

//Disjunction
static int disjunction(const int p, const int q){
	return (p == 0 && q == 0) ? 0 : 1;
}

//Conditional 
static int conditional(const int p, const int q){
	return (p != 0 && q == 0) ? 0 : 1;
}

//Biconditional
static int biconditional(const int p, const int q){
	return ((p == 0 && q == 0) || (p != 0 && q != 0)) ? 1 : 0;
}

//Whether or not is Propostion?
static int is_proposition(const char ch){
	return isalpha(ch) || isalnum(ch);
}

//Whether or not is Logical Connnectives?
static int is_LogicalConnectives(const char c){
	switch(c){
	case '+':
	case '*':
	case '>':
	case '~':
	case '=': 
		return 1;
	default: 
		return 0;
	}
}


//Stack Priority
static int get_isp(const char ch){
	switch(ch){
	case '#': 
		return 0;
	case '+':
	case '*':
	case '=':
	case '>': 
		return 5;
	case '~': 
		return 7;
	case '(': 
		return 1;
	case ')': 
		return 8;
	default: 
		return -1;
	}
}
//Stack Priority
static int get_icp(const char ch){
	switch(ch)
	{
	case '#': 
		return 0;
	case '+':
	case '*':
	case '=':
	case '>': 
		return 4;
	case '~': 
		return 6;
	case '(': 
		return 8;
	case ')': 
		return 1;
	default: 
		return -1;
	}
}

//Inverse Poland Type
static void to_InversePolandT(char* last_exp, const char* pre_exp){ 
	char sign_stack[LengthMaxLimit] = {'\0'};

	int sp = -1;
	int pp = 0;
	int lp = 0;

	sign_stack[++sp] = '#';

	while(pre_exp[pp] != '\0'){
		if(is_proposition(pre_exp[pp]))	{
			last_exp[lp++] = pre_exp[pp];
		}
		else{
			while(get_icp(pre_exp[pp]) < get_isp(sign_stack[sp])){												
				last_exp[lp++] = sign_stack[sp];
				sign_stack[sp--] = '\0';
			}
			if(get_icp(pre_exp[pp]) == get_isp(sign_stack[sp]))
				sign_stack[sp--] = '\0';
			else											   
				sign_stack[++sp] = pre_exp[pp];
		}
		pp++;
	}
	
	while(sp != 0){
		last_exp[lp++] = sign_stack[sp--];
	}
}


static void add_blackets(char* s){
	int len = strlen(s);
	memcpy(s + 1, s, len);
	s[0] = '(';
	s[len + 1] = ')';
}


static void exp_resolve(const char* exp, const int length, char (*re_exp)[LengthMaxLimit] , int k){
	
	char stack[LengthMaxLimit][LengthMaxLimit] = {"\0"};
	char rpn_exp[LengthMaxLimit] = "\0";
	char tmp_exp[LengthMaxLimit] = "\0";

	
	int sp = -1; 
	int len = 0;
	int i = 0;
	int j = 0;

	to_InversePolandT(rpn_exp, exp);

	for(i = 0; i < length; i++){		
		if(j > k){
			break;
		}
		else if(rpn_exp[i] == '~'){			
			memset(tmp_exp, '\0', sizeof(char) * LengthMaxLimit);
			strncpy(tmp_exp, &rpn_exp[i], sizeof(char));
			strcpy(tmp_exp + strlen(tmp_exp), stack[sp]);
			add_blackets(tmp_exp);

			
			memset(stack[sp], '\0', sizeof(char) * LengthMaxLimit);
			sp--;
			strcpy(stack[++sp], tmp_exp);
			j++;
		}
		else if(is_LogicalConnectives(rpn_exp[i])){			
			memset(tmp_exp, '\0', sizeof(char) * LengthMaxLimit);
			strcpy(tmp_exp, stack[sp-1]);
			strncpy(tmp_exp + strlen(tmp_exp), &rpn_exp[i], 1);
			strcpy(tmp_exp + strlen(tmp_exp), stack[sp]);
			add_blackets(tmp_exp);

			
			memset(stack[sp], '\0', sizeof(char) * LengthMaxLimit);
			memset(stack[sp - 1], '\0', sizeof(char) *LengthMaxLimit);
			sp -= 2;
			strcpy(stack[++sp], tmp_exp);
			j++;
		}
		else if(is_proposition(rpn_exp[i])){
			strncpy(stack[++sp], &rpn_exp[i], 1);
		}
	}
	strcpy(re_exp[k], tmp_exp);
}


static void binary_inc(int* a, int length){
	int i = 0, c = 0;	
	a[length - 1] += 1;
	for(i = length - 1; i > 0; i--)	{
		if(a[i] > 1){
			a[i] = 0;
			a[i - 1] += 1;
		}
		else
			break;
	}
}


static int get_proposition(const char* exp, const int length, char* p){
	int i = 0;
	int j = 0;
	int k = 0;
	int n = 0;

	for(i = 0; i < length; i++){
		if(is_proposition(exp[i])){
			j = 0;
			k = 0;
			while(p[j] != '\0')	{
				if(exp[i] == p[j]){
					k = 1;
					break;
				}
				j++;
			}
			if(k == 0){
				p[j] = exp[i];
				n++;
			}
		}
	}
	return n;
}



static void proposition_ass(const char* pre_exp, int length, char *p, int* v, int n, char* last_exp)
{
	int j = 0, k = 0;
	for(j = 0; j < length; j++)	{
		if(is_proposition(pre_exp[j])){
			for(k = 0; k < n; k++){
				if(pre_exp[j] == p[k])
					last_exp[j] = v[k] + '0';
			}
		}
		else
			last_exp[j] = pre_exp[j];
	}
}

//Binary to Dec
static int bin2dec(int* v, int n)
{
	int num = 0, i = 0;
	for(i = n - 1; i > -1; i--)
	{
		if(v[i] == 0)
			continue;
		num += (int)pow(2.0, n - i - 1);
	}

	return num;
}


/*Public functions */

// Compute for well formed formula Values
int compute_wellformed(const char* exp, const int length)
{
	if(!is_wellformed(exp, length)){
		printf("The expression is not a well formed\n");
		return -1;
	}

	char last_exp[LengthMaxLimit] = {'\0'};
	int stack[LengthMaxLimit] = {0};
	int lp = 0, sp = -1, r, i;

	for(i = 0; i < length; i++){
		if(isalpha(exp[i])){
			printf("does not assigment");
			return -1;
		}
	}


	to_InversePolandT(last_exp, exp);
	
	while(last_exp[lp] != '\0')
	{
		if(isalnum(last_exp[lp])){
			stack[++sp] = last_exp[lp] - '0';
		}
		else if(last_exp[lp] == '~'){
			r = compute(0, stack[sp--], last_exp[lp]);
			stack[++sp] = r;
		}
		else if(is_LogicalConnectives(last_exp[lp])){
			r = compute(stack[sp-1], stack[sp], last_exp[lp]);
			sp -= 2;
			stack[++sp] = r;
		}
		lp++;
	}
	return stack[sp];
}


//Whether or not is well-formed?
int is_wellformed(const char* s, const int length){
	int l_bracket = 0;
	int r_bracket = 0;
	int i = 0;

	if(length == 1 && is_proposition(s[i]))    
		return 1;
	
	while(i < length){
		if(is_proposition(s[i])){
			if(!is_LogicalConnectives(s[i + 1]) && s[i + 1] != ')' && s[i + 1] != '\0' || s[i + 1] == '~')
				return 0;
		}
		else if(is_LogicalConnectives(s[i])){
			if(!is_proposition(s[i + 1]) && s[i + 1] != '~' && s[i + 1] != '(')
				return 0;
		}
		else if(s[i] == '(')
		{
			if(s[i + 1] != '~' && !is_proposition(s[i + 1]) && s[i + 1] != '(')
				return 0;
			l_bracket++;
		}
		else if(s[i] == ')')
		{

			if(s[i + 1] != '\0' && !is_LogicalConnectives(s[i + 1]) && s[i + 1] != ')' || s[i + 1] == '~')
				return 0;
			r_bracket++;
		}
		i++;
	}
	if(l_bracket == r_bracket)
		return 1;
	else 
		return 0;
}

//print truth table 
void truth_table(const char* exp, const int length)
{
	if(!is_wellformed(exp, length))	{
		printf("The expression is not a wff\n");
		return;
	}


	int i, j, k, r, n = 0, m = 0;
	char s[LengthMaxLimit] = "\0";
	char p[LengthMaxLimit] = "\0";
	char ss[LengthMaxLimit][LengthMaxLimit] = {'\0'};

	n = get_proposition(exp, length, p);
	m = (int)pow(2.0, n);				
	int* v = new int[m];    

	memset(v, 0, sizeof(int) * m);
	memset(ss, '\0', sizeof(char) * LengthMaxLimit * LengthMaxLimit);

	for(i = 0, k = 0; i < length; i++){
		if(is_LogicalConnectives(exp[i])){
			exp_resolve(exp, length, ss, k);
			k++;
		}
	}

	for(j = 0; j < n; j++) 
		printf("%c  ", p[j]);//print propostional

	for(j = 0; j < k; j++) 
		printf("%s  ", ss[j]);
	printf("\n");

	for(i = 0; i < m; i++){
		for(j = 0; j < n; j++) 
			printf("%d  ", v[j]);

		for(j = 0; j < k; j++){ 
			memset(s, '\0', sizeof(char) * LengthMaxLimit);
			proposition_ass(ss[j], strlen(ss[j]), p, v, n, s);
			r = compute_wellformed(s, strlen(s));                    
			printf("%d      ", r);
		}

		binary_inc(v, n);
		printf("\n");
	}
	
	delete[] v;
}

//Main Disjunction
int get_main_disjunction(const char* exp, char* resu)
{
	int len = strlen(exp);
	if(!is_wellformed(exp, len))
		return 0;
	memset(resu, '\0', sizeof(char) * LengthMaxLimit);
	char tmp_exp[LengthMaxLimit] = "\0";
	char p[LengthMaxLimit] = "\0";						
	int i = 0, r = 0;
	int n = get_proposition(exp, len, p);	
	int m = (int)pow(2.0, n);				
	int* v = new int[m];					
	memset(v, 0, sizeof(int) * m);

	int r_index = 0;
	for(i = 0; i < m; i++)
	{
		proposition_ass(exp, len, p, v, n, tmp_exp);
		r = compute_wellformed(tmp_exp, strlen(tmp_exp));   //compute to well-fomred
		if(r == 1)
		{
			if(r_index - 1 > -1 && resu[r_index - 1] != '\0')
				resu[r_index++] = '+';
			
			char strn[10] = "\0", num = 0;
			num = bin2dec(v, n);
			resu[r_index++] = 'm';
			_itoa(num, strn, 10);
			memcpy(resu + r_index, strn, sizeof(char) * strlen(strn));
			resu += strlen(strn); //以上几行为添加范式

		}

		binary_inc(v, n);
	}


	delete[] v;
	return 1;
}

//Main conjunction
int get_main_conjunction( char* exp, char* resu)
{
	int len = strlen(exp);
	if(!is_wellformed(exp, len))
		return 0;

	memset(resu, '\0', sizeof(char) *LengthMaxLimit);
	char tmp_exp[LengthMaxLimit] = "\0";
	char p[LengthMaxLimit] = "\0";						
	int i = 0, r = 0;
	int n = get_proposition(exp, len, p);	
	int m = (int)pow(2.0, n);				
	int* v = new int[m];					
	memset(v, 0, sizeof(int) * m);

	int r_index = 0;
	for(i = 0; i < m; i++)
	{
		proposition_ass(exp, len, p, v, n, tmp_exp);
		r = compute_wellformed(tmp_exp, strlen(tmp_exp));   
		if(r == 0)
		{
			if(r_index - 1 > -1 && resu[r_index - 1] != '\0')
				resu[r_index++] = '*';
			
			char strn[10] = "\0", num = 0;
			num = bin2dec(v, n);
			resu[r_index++] = 'M';
			_itoa(num, strn, 10);
			memcpy(resu + r_index, strn, sizeof(char) * strlen(strn));
			resu += strlen(strn);

		}

		binary_inc(v, n);
	}


	delete[] v;

	return 1;
}

void  help(){
    printf("*********************************************************");
    printf("\n*\t\t\t\t\t\t\t*");
    printf("\n*\t\t Welcome to Propostion Set\t\t*");
    printf("\n*\t\t\t\t\t\t\t*");
    printf("\n*\t Usage:\t\t\t\t\t\t*");
    printf("\n*\t\t'~': Negation\t\t\t\t*");
    printf("\n*\t\t'+': Disjunction\t\t\t\*");
    printf("\n*\t\t'*': Conjunction\t\t\t*");
    printf("\n*\t\t'>': Conditional\t\t\t*");
    printf("\n*\t\t'=': Biconditional\t\t\t*");
    printf("\n*\t\t'default': -1\t\t\t\t*");        
        
    printf("\n*\t\t\t\t\t\t\t*");
    printf("\n*********************************************************");
    printf("\n");
} 

Main源文件

/**************************************************************************
 * (C) Copyright 2015-2018 by Gavin  Y. Liu  All Rights Reserved.         *
 *                                                                        *
 * DISCLAIMER: The authors and publisher shall not be liable in any event * 
 * for incidental or consequential damages in connection with, or arising *
 * out of, the furnishing, performance, or use of these programs.         *
 **************************************************************************/


#include <stdio.h>
#include <string.h>

#include "PropostionalLogicHeader.h"

 /*main program */

int main( ){
	help();

	char s[100];
	int length, r = 0;
	
	while(scanf("%s", s) && s[0] != '#'){
		length = strlen(s);
		printf("expression is:   %s\n\n", s);
		//Whether or not is well-formed?
		printf("is_wellformed Formula?  %d\n\n", is_wellformed(s, length));

		printf("compute_wellfomred is: ");
		r = compute_wellformed(s, length);
		if(r > -1)
			printf("%d", r);
		printf("\n\n");

		printf("Print True table\n");
		truth_table(s,length);

		char dis_form[LengthMaxLimit];
		get_main_disjunction(s, dis_form);
		printf("main disjunction normal form is: %s\n\n", dis_form);
		char con_form[LengthMaxLimit];
		get_main_conjunction(s, con_form);
		printf("main conjunction normal form is: %s\n\n", con_form);
	}
	return 0;
}

测试结果

界面

离散数学实践:真值表与范式_第1张图片

测试:p蕴含q,然后蕴含r

离散数学实践:真值表与范式_第2张图片

测试: p析取q,然后蕴含r

离散数学实践:真值表与范式_第3张图片

测试:p蕴含q,然后析取r

离散数学实践:真值表与范式_第4张图片


关于Discrete Mathematics更多讨论与交流,敬请关注本博客和新浪微博songzi_tea.




你可能感兴趣的:(离散数学实践:真值表与范式)