两个事物之间的关系称之为二元关系。在数学上,二元关系指的是这样的一个集合S,它的所有元素都为二元有序对。它反映的是有序对中第一个元素组成的集合与第二个元素组成的集合之间的关系。举个例子,集合S={<天秤座,libra>,<狮子座,leo>} 就表示了中文集合{天秤座,狮子座}与英文集合{libra,leo}之间的对应关系。
二元关系可以用集合表示,就像我们上面提到的。而除此之外,还可以用其他数学工具来描述它——矩阵和图。矩阵的基本元素是数字及其所处的位置。直觉上,我们很自然的想到用它的下标来体现两个集合中的元素,用数字体现它们是否具有关系。这便得出了以下定义:
【定义】设集合A={x1,x2,…,xm},B={y1,y2,…,yn},R为A,B之间的二元关系。称矩阵M(R)=(rij)m×n为R的关系矩阵,其中
这样我们定义了一个映射,把集合R映射为一个矩阵M。如此定义,首先保证了R的集合表达式和R的关系矩阵是一一对应的。其次,这样的定义会带来很多好的性质。我们可以应用矩阵的语言把整个二元关系的理论重新叙述一遍:
为了用矩阵表示关系的合成,我们可以定义{0,1}中元素的加法为逻辑加法(0+0=0,0+1=1,1+0=1,1+1=1),于是便有
M(R2•R1)=M(R1)•M(R2)
这样,关系的合成这一运算就转化为了矩阵的相乘。
特殊的,集合A上的二元关系R指的是A×A={<x,y>|xεA,yεA}。这样像前面第二条性质就有M(R2)=(M(R))2
等价关系R(同时具有自反,对称,传递性质的二元关系)可以确定集合A上的一个划分,那么如何从关系矩阵中找出相应的等价类?如下图所示:
如何用图来表示等价关系呢?由于关系中的元素是有序对,直觉上,我们很自然的想到用有向图。于是定义如下:
【定义】设集合A={x1,x2,…,xm},B={y1,y2,…,yn},R为A,B之间的二元关系。以A,B中的元素为顶点,若<xi,yj>εR,则从顶点xi向yj引有向边,称所画出的图G(R)为R的关系图。
这样,我们就可以用图论的语言把整个二元关系的理论重新叙述一遍:
特殊的,集合A上的二元关系R对应的关系图将为多重图(有重边和环的出现)。
如何从关系图中找出一个等价关系所确定的划分?
对于二元关系中的其他一些理论(如闭包和序关系),用关系矩阵和关系图描述一下试试。我们经常把一件事物抽象为数学模型来表达。有时换一种数学工具可能在处理某些运算时给我们带来方便。用不同的工具思考,能更深刻的理解数学各个分支之间的联系。
关于Discrete Mathematics更多讨论与交流,敬请关注本博客和新浪微博songzi_tea.