本篇文章介绍如何用OpenCV-Python来使用Canny算子。
提示:
OpenCV-Python中Canny函数的原型为:
edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]])必要参数:
其中较大的阈值2用于检测图像中明显的边缘,但一般情况下检测的效果不会那么完美,边缘检测出来是断断续续的。所以这时候用较小的第一个阈值用于将这些间断的边缘连接起来。
可选参数中apertureSize就是Sobel算子的大小。而L2gradient参数是一个布尔值,如果为真,则使用更精确的L2范数进行计算(即两个方向的倒数的平方和再开放),否则使用L1范数(直接将两个方向导数的绝对值相加)。
具体的算法可参见清华大学出版社的《图像处理与计算机视觉算法及应用(第2版) 》第二章,其中有Canny算法的详细描述及实现。
函数返回一副二值图,其中包含检测出的边缘。
Canny函数的使用很简单,只需指定最大和最小阈值即可。如下:
#coding=utf-8 import cv2 import numpy as np img = cv2.imread("D:/lion.jpg", 0) img = cv2.GaussianBlur(img,(3,3),0) canny = cv2.Canny(img, 50, 150) cv2.imshow('Canny', canny) cv2.waitKey(0) cv2.destroyAllWindows()首先,由于Canny只能处理灰度图,所以将读取的图像转成灰度图。
用高斯平滑处理原图像降噪。
调用Canny函数,指定最大和最小阈值,其中apertureSize默认为3。
处理结果如下:
这个程序只是静态的,在github上有一个可以在运行时调整阈值大小的程序。其代码如下:
import cv2 import numpy as np def CannyThreshold(lowThreshold): detected_edges = cv2.GaussianBlur(gray,(3,3),0) detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size) dst = cv2.bitwise_and(img,img,mask = detected_edges) # just add some colours to edges from original image. cv2.imshow('canny demo',dst) lowThreshold = 0 max_lowThreshold = 100 ratio = 3 kernel_size = 3 img = cv2.imread('D:/lion.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.namedWindow('canny demo') cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold) CannyThreshold(0) # initialization if cv2.waitKey(0) == 27: cv2.destroyAllWindows()原地址 在此,其中还有其他的初级图像处理的代码,大伙可以去看看。后续文章将介绍更多的OpenCV的函数使用,以及视频的处理。
1、《Opencv2 Computer Vision Application Programming Cookbook》
2、《OpenCV References Manule》