[ACM] HDU 1796 How many integers can you find (容斥原理)

How many integers can you find




Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 

Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 

Output
  For each case, output the number.
 

Sample Input
   
   
   
   
12 2 2 3
 

Sample Output
   
   
   
   
7
 

Author
wangye
 

Source
2008 “Insigma International Cup” Zhejiang Collegiate Programming Contest - Warm Up(4)


到现在才学习容斥....以前见到过好多次这个题,都没认真做....

给定一个包括m个数的集合,数不超过20,问有多少个<n的数,能够被集合中的数整除。
关键问题是重复计算,比如6可以被2整除,也可以被3整除,计数了两次,所以要用到容斥原理。
容斥就是对于重叠次数只有奇数次的,我们加上,重叠次数为偶数次的,我们要减去。
对于每个数,都计算重叠一次的,重叠两次的,重叠三次的...最多重叠m次,有m个数
所以要用到DFS,然后保存中间态重叠x次的最小公倍数lcm,符合题意的数有(n-1)/lcm个
(**  1~n之间有多少个能被x整除的数,公式为n/x,题目中要求小于n,所以(n-1)/x  **),根据
step重叠的次数或者加上,或者减去。

比如n=7,m=2,集合中的数为2 3
首先对于2,重叠一次,lcm=2,7/2=3,有3个符合的数(其实是2,4,6),因为重叠次数是奇数,所以
ans+=3,这时中间态lcm=2,然后继续dfs剩下的数(因为要和其它数组和在一块进行重叠,这里只剩下3了),
重叠两次, lcm=LCM(lcm,3), lcm=LCM(2,3)=6,7/6=1,重叠次数为偶数,ans-=1,这样以2开始的所有情况就完了。
再对于3,重叠一次,lcm=3,7/3=2,有两个符合的数,ans+=2.最终ans=4

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <cmath>
#include <iomanip>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cctype>
#define rd(x) scanf("%d",&x)
#define rd2(x,y)  scanf("%d%d",&x,&y)
#define rd3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=25;
ll num[maxn];//寸有效数字
int cnt;
ll ans;
ll n,m;

ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}
ll LCM(ll a,ll b)
{
    return a*b/gcd(a,b);
}

void dfs(int th,ll now,int step)//th,该数是num中的第几个,now是当前的最小公倍数,step是重叠几次,最多cnt次
{
    if(step>cnt)
        return;
    ll lcm=LCM(num[th],now);//这里lcm是step个数的最小公倍数
    if(step&1)
        ans+=(n-1)/lcm;//1~n之间有多少个能被x整除的数,公式为n/x,题目中要求小于n,所以(n-1)/x
    else
        ans-=(n-1)/lcm;
    for(int p=th+1;p<cnt;p++)
        dfs(p,lcm,step+1);
}

int main()
{
    while(scanf("%I64d%I64d",&n,&m)!=EOF)
    {
        cnt=0;
        ans=0;
        ll val;
        while(m--)
        {
            scanf("%I64d",&val);
            if(val>0&&val<n)
                num[cnt++]=val;
        }
        for(int i=0;i<cnt;i++)//从每个数开始,搜索重叠一次,两次,三次....
        {
            dfs(i,num[i],1);
        }
        printf("%I64d\n",ans);
    }
    return 0;
}
 
 

第二种方法:枚举二进制位

将符合条件的m个数,看作m位,每位是0或者是1,那么一共有2^m种状态,只要判断一下每一个状态有多少个1,也就是有多少个数(重叠多少次),记为k,每一个1代表哪几个具体的数,求这几个数的最小公倍数,然后(n-1)/lcm,  利用k的值来判断应该减去还是加上。

#define rd(x) scanf("%d",&x)
#define rd2(x,y)  scanf("%d%d",&x,&y)
#define rd3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=25;
ll num[maxn];//存有效数字
int cnt;
ll ans;
ll n,m;

ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}
ll LCM(ll a,ll b)
{
    return a*b/gcd(a,b);
}

int main()
{
    while(scanf("%I64d%I64d",&n,&m)!=EOF)
    {
        cnt=0;
        ans=0;
        ll val;
        for(int i=1;i<=m;i++)
        {
            scanf("%I64d",&val);
            if(val>0&&val<n)
                num[cnt++]=val;
        }
        for(int i=1;i<(1<<cnt);i++)//把cnt个数看作cnt位,每位是0或者1
        {
            //下面就是求状态i里面有多少个1,也就是重叠多少次,用k表示
            int k=0;
            ll lcm=1;
            for(int j=0;j<cnt;j++)
            {
                if(i&(1<<j))
                {
                    k++;
                    lcm=LCM(lcm,num[j]);//求出这k个数的最小公倍数
                }
            }
            if(k&1)
                ans+=(n-1)/lcm;
            else
                ans-=(n-1)/lcm;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}



你可能感兴趣的:([ACM] HDU 1796 How many integers can you find (容斥原理))