TopCoder SRM 392 Level2 1000
原题地址:http://www.topcoder.com/stat?c=problem_statement&pm=8561&rd=11126
两个整数n和d, 1<=n<=10, 1<=d<=n,求一个n*n方阵,每一行每一列都存在0~d的每个数,如果有多个矩阵,返回字母序最小的一个。
从头递归搜索,对每个位置从小遍历所有值,针对每个值做如下操作:
1.赋值为0
2.检查该行剩下的位置是否足够放下还没有出现的所有的数,若否返回第一步并且++;
3.检查该列剩下的位置是否足够放下还没有出现的所有的数,若否返回第一步并且++;
4.现在是一个可以考虑的值,首先是终结值,若该位置已经是矩阵右下角,则返回true,这是唯一返回true的起点
5.向后递归调用函数,调用下一个位置
6.如果返回值为true,则返回true,否则继续
7.返回false
总的来说,递归的顺序,1是遍历所有可能值,2,3是排除和剪枝,4是检测成功条件,5是递归调用,6,7是递归的结果
算法的复杂度较高,(15,15)就已经算不出了,而且还不知道该怎么计算时间复杂度,这样的递归应该复杂度是很高的
可是通过剪枝应该优化了很多,不过不知道计算复杂度时侯要怎么考虑。
很大程度上还是根据提示写完的,代码能力太弱啦!
原题地址:http://www.topcoder.com/stat?c=problem_statement&pm=8561&rd=11126
两个整数n和d, 1<=n<=10, 1<=d<=n,求一个n*n方阵,每一行每一列都存在0~d的每个数,如果有多个矩阵,返回字母序最小的一个。
从头递归搜索,对每个位置从小遍历所有值,针对每个值做如下操作:
1.赋值为0
2.检查该行剩下的位置是否足够放下还没有出现的所有的数,若否返回第一步并且++;
3.检查该列剩下的位置是否足够放下还没有出现的所有的数,若否返回第一步并且++;
4.现在是一个可以考虑的值,首先是终结值,若该位置已经是矩阵右下角,则返回true,这是唯一返回true的起点
5.向后递归调用函数,调用下一个位置
6.如果返回值为true,则返回true,否则继续
7.返回false
总的来说,递归的顺序,1是遍历所有可能值,2,3是排除和剪枝,4是检测成功条件,5是递归调用,6,7是递归的结果
算法的复杂度较高,(15,15)就已经算不出了,而且还不知道该怎么计算时间复杂度,这样的递归应该复杂度是很高的
可是通过剪枝应该优化了很多,不过不知道计算复杂度时侯要怎么考虑。
很大程度上还是根据提示写完的,代码能力太弱啦!
1
import
java.util.
*
;
2 import java.util.regex. * ;
3 import java.text. * ;
4 import java.math. * ;
5 import java.awt.geom. * ;
6
7 public class QuasiLatinSquares
8 {
9 int[][] ans;
10 int n;
11 int d;
12
13 public String[] makeSquare(int n, int d)
14 {
15
16 this.n = n;
17 this.d = d;
18 ans = new int[n][n];
19 backtrace(0,0);
20
21 //change the integer matrix to string array
22 String[] ret = new String[n];
23 for(int i = 0; i < n ; ++ i){
24 StringBuilder sb = new StringBuilder();
25 sb.append(ans[i][0]);
26 for(int j = 1; j < n ; ++ j){
27 sb.append(" ");
28 sb.append(ans[i][j]);
29 }
30 ret[i] = sb.toString();
31 }
32 return ret;
33 }
34
35 public boolean backtrace(int i, int j){
36 //have to check every value here
37 for(int v = 0; v < d; ++ v){
38 ans[i][j] = v;
39
40 //check whether still enough place for numbers that haven't appear
41 boolean[] row = new boolean[d];
42 boolean[] col = new boolean[d];
43 Arrays.fill(row, false);
44 Arrays.fill(col, false);
45 for(int rowidx = 0; rowidx <= i; ++ rowidx)
46 row[ans[rowidx][j]] = true;
47 for(int colidx = 0; colidx <= j; ++ colidx)
48 col[ans[i][colidx]] = true;
49 int rct = 0, cct = 0;
50 for(boolean b:row){
51 if(b == false) rct++;
52 }
53 for(boolean b:col){
54 if(b == false) cct++;
55 }
56 if(rct > n-1-i)
57 continue;
58 if(cct > n-1-j)
59 continue;
60
61 //if it's the last place, success!
62 if((i == n-1) && (j == n-1))
63 return true;
64
65 //recursively calculate latter numbers based on this value
66 boolean next;
67 if(j != n-1)
68 next = backtrace(i,j+1);
69 else
70 next = backtrace(i+1,0);
71 //if it has reached the end,it means this value has led to success, else it means the value has to increase
72 if(next == true)
73 return true;
74
75 }
76 //have checked every number but none matches, former numbers has to reconsider
77 return false;
78 }
79}
2 import java.util.regex. * ;
3 import java.text. * ;
4 import java.math. * ;
5 import java.awt.geom. * ;
6
7 public class QuasiLatinSquares
8 {
9 int[][] ans;
10 int n;
11 int d;
12
13 public String[] makeSquare(int n, int d)
14 {
15
16 this.n = n;
17 this.d = d;
18 ans = new int[n][n];
19 backtrace(0,0);
20
21 //change the integer matrix to string array
22 String[] ret = new String[n];
23 for(int i = 0; i < n ; ++ i){
24 StringBuilder sb = new StringBuilder();
25 sb.append(ans[i][0]);
26 for(int j = 1; j < n ; ++ j){
27 sb.append(" ");
28 sb.append(ans[i][j]);
29 }
30 ret[i] = sb.toString();
31 }
32 return ret;
33 }
34
35 public boolean backtrace(int i, int j){
36 //have to check every value here
37 for(int v = 0; v < d; ++ v){
38 ans[i][j] = v;
39
40 //check whether still enough place for numbers that haven't appear
41 boolean[] row = new boolean[d];
42 boolean[] col = new boolean[d];
43 Arrays.fill(row, false);
44 Arrays.fill(col, false);
45 for(int rowidx = 0; rowidx <= i; ++ rowidx)
46 row[ans[rowidx][j]] = true;
47 for(int colidx = 0; colidx <= j; ++ colidx)
48 col[ans[i][colidx]] = true;
49 int rct = 0, cct = 0;
50 for(boolean b:row){
51 if(b == false) rct++;
52 }
53 for(boolean b:col){
54 if(b == false) cct++;
55 }
56 if(rct > n-1-i)
57 continue;
58 if(cct > n-1-j)
59 continue;
60
61 //if it's the last place, success!
62 if((i == n-1) && (j == n-1))
63 return true;
64
65 //recursively calculate latter numbers based on this value
66 boolean next;
67 if(j != n-1)
68 next = backtrace(i,j+1);
69 else
70 next = backtrace(i+1,0);
71 //if it has reached the end,it means this value has led to success, else it means the value has to increase
72 if(next == true)
73 return true;
74
75 }
76 //have checked every number but none matches, former numbers has to reconsider
77 return false;
78 }
79}