3442: 学习小组
Time Limit: 5 Sec
Memory Limit: 128 MB
Submit: 200
Solved: 87
[ Submit][ Status][ Discuss]
Description
【背景】
坑校准备鼓励学生参加学习小组。
【描述】
共有n个学生,m个学习小组,每个学生有一定的喜好,只愿意参加其中的一些学习小组,但是校领导为学生考虑,规定一个学生最多参加k个学习小组。财务处的大叔就没那么好了,他想尽量多收钱,因为每个学生参加学习小组都要交一定的手续费,不同的学习小组有不同的手续费。然而,事与愿违,校领导又决定对学习小组组织者进行奖励,若有a个学生参加第i个学习小组,那么给这个学习小组组织者奖励Ci*a^2元。在参与学生(而不是每个学习小组的人数总和)尽量多的情况下,求财务处最少要支出多少钱(若为负数,则输出负数)(支出=总奖励费-总手续费)。
Input
输入有若干行,第一行有三个用空格隔开的正整数n、m、k。接下来的一行有m个正整数,表示每个Ci。第三行有m个正整数,表示参加每个学习小组需要交的手续费Fi。再接下来有一个n行m列的矩阵,表若第i行j列的数字是1,则表示第i个学生愿意参加第j个学习小组,若为0,则为不愿意。
Output
Sample Input
3 3 1
1 2 3
3 2 1
111
111
111
Sample Output
-2
【样例解释】
参与学生最多为3,每个学生参加一个学习小组,若有两个学生参加第一个学习小组,一个学生参加第二个学习小组(一定要有人参加第二个学习小组),支出为-2,可以证明没有更优的方案了。
【数据范围与约定】
100%的数据,0<n≤100,0<m≤90,0<k≤m,0<Ci≤10,0<Fi≤100。
HINT
Source
By lll6924 at “冬令营后竞速放松赛”
最小费用最大流,由于费用和流量的平方成正比,所以要用到拆边法。
这道题有一个坑,就是在参与同学尽可能多的情况下,也就是说每个人都参加,但每个人的k不一定要满流,我们可以从每个人的节点向汇点连一条容量为k-1、费用为0的边。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define pa pair<int,int>
#define maxn 300
#define maxm 50000
#define inf 1000000000
using namespace std;
struct edge_type
{
int from,to,next,v,c;
}e[maxm];
int n,m,k,s,t,cnt=1,ans=0;
int head[maxn],dis[maxn],p[maxn],c[maxn],f[maxn];
bool inq[maxn];
char ch;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add_edge(int x,int y,int v,int c)
{
e[++cnt]=(edge_type){x,y,head[x],v,c};head[x]=cnt;
e[++cnt]=(edge_type){y,x,head[y],0,-c};head[y]=cnt;
}
inline bool spfa()
{
queue<int>q;
memset(inq,false,sizeof(inq));
F(i,1,t) dis[i]=inf;
dis[s]=0;inq[s]=true;q.push(s);
while(!q.empty())
{
int x=q.front();inq[x]=false;q.pop();
for(int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
if (e[i].v&&dis[y]>dis[x]+e[i].c)
{
dis[y]=dis[x]+e[i].c;
p[y]=i;
if (!inq[y]){inq[y]=true;q.push(y);}
}
}
}
return dis[t]!=inf;
}
inline void mcf()
{
while(spfa())
{
int tmp=inf;
for(int i=p[t];i;i=p[e[i].from]) tmp=min(tmp,e[i].v);
ans+=tmp*dis[t];
for(int i=p[t];i;i=p[e[i].from]){e[i].v-=tmp;e[i^1].v+=tmp;}
}
}
int main()
{
n=read();m=read();k=read();
F(i,1,m) c[i]=read();
F(i,1,m) f[i]=read();
F(i,1,n) F(j,1,m)
{
ch=getchar();while (ch<'0'||ch>'1') ch=getchar();
if (ch=='1') add_edge(i,j+n,1,0);
}
s=n+m+1;t=s+1;
F(i,1,n) add_edge(s,i,k,0),add_edge(i,t,k-1,0);
F(i,1,m) F(j,1,n) add_edge(i+n,t,1,(2*j-1)*c[i]-f[i]);
mcf();
printf("%d\n",ans);
}