Spark SQL 源码分析之Physical Plan 到 RDD的具体实现

  /** Spark SQL源码分析系列文章*/

  接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节:

  我们都知道一段sql,真正的执行是当你调用它的collect()方法才会执行Spark Job,最后计算得到RDD。
  lazy val toRdd: RDD[Row] = executedPlan.execute()

  Spark Plan基本包含4种操作类型,即BasicOperator基本类型,还有就是Join、Aggregate和Sort这种稍复杂的。

  如图:

  Spark SQL 源码分析之Physical Plan 到 RDD的具体实现_第1张图片

一、BasicOperator

1.1、Project

  Project 的大致含义是:传入一系列表达式Seq[NamedExpression],给定输入的Row,经过Convert(Expression的计算eval)操作,生成一个新的Row。
  Project的实现是调用其child.execute()方法,然后调用mapPartitions对每一个Partition进行操作。
  这个f函数其实是new了一个MutableProjection,然后循环的对每个partition进行Convert。
case class Project(projectList: Seq[NamedExpression], child: SparkPlan) extends UnaryNode {
  override def output = projectList.map(_.toAttribute)
  override def execute() = child.execute().mapPartitions { iter => //对每个分区进行f映射
    @transient val reusableProjection = new MutableProjection(projectList) 
    iter.map(reusableProjection)
  }
}
  通过观察MutableProjection的定义,可以发现,就是bind references to a schema 和 eval的过程:
  将一个Row转换为另一个已经定义好schema column的Row。
  如果输入的Row已经有Schema了,则传入的Seq[Expression]也会bound到当前的Schema。
case class MutableProjection(expressions: Seq[Expression]) extends (Row => Row) {
  def this(expressions: Seq[Expression], inputSchema: Seq[Attribute]) =
    this(expressions.map(BindReferences.bindReference(_, inputSchema))) //bound schema

  private[this] val exprArray = expressions.toArray
  private[this] val mutableRow = new GenericMutableRow(exprArray.size) //新的Row
  def currentValue: Row = mutableRow
  def apply(input: Row): Row = {
    var i = 0
    while (i < exprArray.length) {
      mutableRow(i) = exprArray(i).eval(input)  //根据输入的input,即一个Row,计算生成的Row
      i += 1
    }
    mutableRow //返回新的Row
  }
}

1.2、Filter

 Filter的具体实现是传入的condition进行对input row的eval计算,最后返回的是一个Boolean类型,
 如果表达式计算成功,返回true,则这个分区的这条数据就会保存下来,否则会过滤掉。
case class Filter(condition: Expression, child: SparkPlan) extends UnaryNode {
  override def output = child.output

  override def execute() = child.execute().mapPartitions { iter =>
    iter.filter(condition.eval(_).asInstanceOf[Boolean]) //计算表达式 eval(input row)
  }
}

1.3、Sample

  Sample取样操作其实是调用了child.execute()的结果后,返回的是一个RDD,对这个RDD调用其sample函数,原生方法。
case class Sample(fraction: Double, withReplacement: Boolean, seed: Long, child: SparkPlan)
  extends UnaryNode
{
  override def output = child.output

  // TODO: How to pick seed?
  override def execute() = child.execute().sample(withReplacement, fraction, seed)
}

1.4、Union

  Union操作支持多个子查询的Union,所以传入的child是一个Seq[SparkPlan]
  execute()方法的实现是对其所有的children,每一个进行execute(),即select查询的结果集合RDD。
  通过调用SparkContext的union方法,将所有子查询的结果合并起来。
case class Union(children: Seq[SparkPlan])(@transient sqlContext: SQLContext) extends SparkPlan {
  // TODO: attributes output by union should be distinct for nullability purposes
  override def output = children.head.output
  override def execute() = sqlContext.sparkContext.union(children.map(_.execute())) //子查询的结果进行union

  override def otherCopyArgs = sqlContext :: Nil
}

1.5、Limit

  Limit操作在RDD的原生API里也有,即take().
  但是Limit的实现分2种情况:
  第一种是 limit作为结尾的操作符,即select xxx from yyy limit zzz。 并且是被executeCollect调用,则直接在driver里使用take方法。
  第二种是 limit不是作为结尾的操作符,即limit后面还有查询,那么就在每个分区调用limit,最后repartition到一个分区来计算global limit.
case class Limit(limit: Int, child: SparkPlan)(@transient sqlContext: SQLContext)
  extends UnaryNode {
  // TODO: Implement a partition local limit, and use a strategy to generate the proper limit plan:
  // partition local limit -> exchange into one partition -> partition local limit again

  override def otherCopyArgs = sqlContext :: Nil

  override def output = child.output

  override def executeCollect() = child.execute().map(_.copy()).take(limit) //直接在driver调用take

  override def execute() = {
    val rdd = child.execute().mapPartitions { iter =>
      val mutablePair = new MutablePair[Boolean, Row]()
      iter.take(limit).map(row => mutablePair.update(false, row)) //每个分区先计算limit
    }
    val part = new HashPartitioner(1)
    val shuffled = new ShuffledRDD[Boolean, Row, Row, MutablePair[Boolean, Row]](rdd, part) //需要shuffle,来repartition
    shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false)))
    shuffled.mapPartitions(_.take(limit).map(_._2)) //最后单独一个partition来take limit
  }
}

1.6、TakeOrdered

  TakeOrdered是经过排序后的limit N,一般是用在sort by 操作符后的limit。
  可以简单理解为TopN操作符。
case class TakeOrdered(limit: Int, sortOrder: Seq[SortOrder], child: SparkPlan)
                      (@transient sqlContext: SQLContext) extends UnaryNode {
  override def otherCopyArgs = sqlContext :: Nil

  override def output = child.output

  @transient
  lazy val ordering = new RowOrdering(sortOrder) //这里是通过RowOrdering来实现排序的

  override def executeCollect() = child.execute().map(_.copy()).takeOrdered(limit)(ordering)

  // TODO: Terminal split should be implemented differently from non-terminal split.
  // TODO: Pick num splits based on |limit|.
  override def execute() = sqlContext.sparkContext.makeRDD(executeCollect(), 1)
}

1.7、Sort

  Sort也是通过RowOrdering这个类来实现排序的,child.execute()对每个分区进行map,每个分区根据RowOrdering的order来进行排序,生成一个新的有序集合。
  也是通过调用Spark RDD的sorted方法来实现的。
case class Sort(
    sortOrder: Seq[SortOrder],
    global: Boolean,
    child: SparkPlan)
  extends UnaryNode {
  override def requiredChildDistribution =
    if (global) OrderedDistribution(sortOrder) :: Nil else UnspecifiedDistribution :: Nil

  @transient
  lazy val ordering = new RowOrdering(sortOrder) //排序顺序

  override def execute() = attachTree(this, "sort") {
    // TODO: Optimize sorting operation?
    child.execute()
      .mapPartitions(
        iterator => iterator.map(_.copy()).toArray.sorted(ordering).iterator, //每个分区调用sorted方法,传入<span style="font-family: Arial, Helvetica, sans-serif;">ordering排序规则,进行排序</span>
        preservesPartitioning = true)
  }

  override def output = child.output
}

1.8、ExistingRdd

ExistingRdd是
object ExistingRdd {
  def convertToCatalyst(a: Any): Any = a match {
    case o: Option[_] => o.orNull
    case s: Seq[Any] => s.map(convertToCatalyst)
    case p: Product => new GenericRow(p.productIterator.map(convertToCatalyst).toArray)
    case other => other
  }

  def productToRowRdd[A <: Product](data: RDD[A]): RDD[Row] = {
    data.mapPartitions { iterator =>
      if (iterator.isEmpty) {
        Iterator.empty
      } else {
        val bufferedIterator = iterator.buffered
        val mutableRow = new GenericMutableRow(bufferedIterator.head.productArity)

        bufferedIterator.map { r =>
          var i = 0
          while (i < mutableRow.length) {
            mutableRow(i) = convertToCatalyst(r.productElement(i))
            i += 1
          }

          mutableRow
        }
      }
    }
  }

  def fromProductRdd[A <: Product : TypeTag](productRdd: RDD[A]) = {
    ExistingRdd(ScalaReflection.attributesFor[A], productToRowRdd(productRdd))
  }
}

二、 Join Related Operators

  HashJoin:

  在讲解Join Related Operator之前,有必要了解一下HashJoin这个位于execution包下的joins.scala文件里的trait。
  Join操作主要包含 BroadcastHashJoinLeftSemiJoinHashShuffledHashJoin均实现了HashJoin这个trait.
  主要类图如下:
   Spark SQL 源码分析之Physical Plan 到 RDD的具体实现_第2张图片
  
  HashJoin这个trait的主要成员有:
  buildSide是左连接还是右连接,有一种基准的意思。
  leftKeys是左孩子的expressions, rightKeys是右孩子的expressions。
  left是左孩子物理计划,right是右孩子物理计划。
  buildSideKeyGenerator是一个Projection是根据传入的Row对象来计算buildSide的Expression的。
  streamSideKeyGenerator是一个MutableProjection是根据传入的Row对象来计算streamSide的Expression的。
  这里buildSide如果是left的话,可以理解为buildSide是左表,那么去连接这个左表的右表就是streamSide。
   Spark SQL 源码分析之Physical Plan 到 RDD的具体实现_第3张图片
  HashJoin关键的操作是joinIterators,简单来说就是join两个表,把每个表看着Iterators[Row].
  方式:
  1、首先遍历buildSide,计算buildKeys然后利用一个HashMap,形成 (buildKeys, Iterators[Row])的格式。
  2、遍历StreamedSide,计算streamedKey,去HashMap里面去匹配key,来进行join
  3、最后生成一个joinRow,这个将2个row对接。
  见代码注释:
trait HashJoin {
  val leftKeys: Seq[Expression]
  val rightKeys: Seq[Expression]
  val buildSide: BuildSide
  val left: SparkPlan
  val right: SparkPlan

  lazy val (buildPlan, streamedPlan) = buildSide match {  //模式匹配,将physical plan封装形成Tuple2,如果是buildLeft,那么就是(left,right),否则是(right,left)
    case BuildLeft => (left, right)
    case BuildRight => (right, left)
  }

  lazy val (buildKeys, streamedKeys) = buildSide match { //模式匹配,将expression进行封装<span style="font-family: Arial, Helvetica, sans-serif;">Tuple2</span>

    case BuildLeft => (leftKeys, rightKeys)
    case BuildRight => (rightKeys, leftKeys)
  }

  def output = left.output ++ right.output

  @transient lazy val buildSideKeyGenerator = new Projection(buildKeys, buildPlan.output) //生成buildSideKey来根据Expression来计算Row返回结果
  @transient lazy val streamSideKeyGenerator = //<span style="font-family: Arial, Helvetica, sans-serif;">生成</span><span style="font-family: Arial, Helvetica, sans-serif;">streamSideKeyGenerator</span><span style="font-family: Arial, Helvetica, sans-serif;">来根据Expression来计算Row返回结果</span>
    () => new MutableProjection(streamedKeys, streamedPlan.output)

  def joinIterators(buildIter: Iterator[Row], streamIter: Iterator[Row]): Iterator[Row] = { //把build表的Iterator[Row]和streamIterator[Row]进行join操作返回Join后的Iterator[Row]
    // TODO: Use Spark's HashMap implementation.

    val hashTable = new java.util.HashMap[Row, ArrayBuffer[Row]]() //匹配主要使用HashMap实现
    var currentRow: Row = null

    // Create a mapping of buildKeys -> rows 
    while (buildIter.hasNext) { //目前只对build Iterator进行迭代,形成rowKey,Rows,类似wordCount,但是这里不是累加Value,而是Row的集合。
      currentRow = buildIter.next()
      val rowKey = buildSideKeyGenerator(currentRow) //计算rowKey作为HashMap的key
      if(!rowKey.anyNull) {
        val existingMatchList = hashTable.get(rowKey)
        val matchList = if (existingMatchList == null) {
          val newMatchList = new ArrayBuffer[Row]()
          hashTable.put(rowKey, newMatchList) //(rowKey, matchedRowList)
          newMatchList
        } else {
          existingMatchList
        }
        matchList += currentRow.copy() //返回matchList
      }
    }

    new Iterator[Row] { //最后用streamedRow的Key来匹配buildSide端的HashMap
      private[this] var currentStreamedRow: Row = _
      private[this] var currentHashMatches: ArrayBuffer[Row] = _
      private[this] var currentMatchPosition: Int = -1

      // Mutable per row objects.
      private[this] val joinRow = new JoinedRow

      private[this] val joinKeys = streamSideKeyGenerator()

      override final def hasNext: Boolean =
        (currentMatchPosition != -1 && currentMatchPosition < currentHashMatches.size) ||
          (streamIter.hasNext && fetchNext())

      override final def next() = {
        val ret = buildSide match {
          case BuildRight => joinRow(currentStreamedRow, currentHashMatches(currentMatchPosition)) //右连接的话,streamedRow放左边,匹配到的key的Row放到右表
          case BuildLeft => joinRow(currentHashMatches(currentMatchPosition), currentStreamedRow) //左连接的话,相反。
        }
        currentMatchPosition += 1
        ret
      }

      /**
       * Searches the streamed iterator for the next row that has at least one match in hashtable.
       *
       * @return true if the search is successful, and false if the streamed iterator runs out of
       *         tuples.
       */
      private final def fetchNext(): Boolean = {
        currentHashMatches = null
        currentMatchPosition = -1

        while (currentHashMatches == null && streamIter.hasNext) {
          currentStreamedRow = streamIter.next()
          if (!joinKeys(currentStreamedRow).anyNull) {
            currentHashMatches = hashTable.get(joinKeys.currentValue) //streamedRow从buildSide里的HashTable里面匹配rowKey
          }
        }

        if (currentHashMatches == null) {
          false
        } else {
          currentMatchPosition = 0
          true
        }
      }
    }
  }
}
joinRow的实现,实现2个Row对接:
实际上就是生成一个新的Array,将2个Array合并。
class JoinedRow extends Row {
  private[this] var row1: Row = _
  private[this] var row2: Row = _
  .........
   def copy() = {
    val totalSize = row1.size + row2.size 
    val copiedValues = new Array[Any](totalSize)
    var i = 0
    while(i < totalSize) {
      copiedValues(i) = apply(i)
      i += 1
    }
    new GenericRow(copiedValues) //返回一个新的合并后的Row
  }

2.1、LeftSemiJoinHash

 left semi join,不多说了,hive早期版本里替代 IN和EXISTS 的版本。
 将右表的join keys放到HashSet里,然后遍历左表,查找左表的join key是否能匹配。
case class LeftSemiJoinHash(
    leftKeys: Seq[Expression],
    rightKeys: Seq[Expression],
    left: SparkPlan,
    right: SparkPlan) extends BinaryNode with HashJoin {

  val buildSide = BuildRight //buildSide是以右表为基准

  override def requiredChildDistribution =
    ClusteredDistribution(leftKeys) :: ClusteredDistribution(rightKeys) :: Nil

  override def output = left.output

  def execute() = {
    buildPlan.execute().zipPartitions(streamedPlan.execute()) { (buildIter, streamIter) => //右表的物理计划执行后生成RDD,利用zipPartitions对Partition进行合并。然后用上述方法实现。
      val hashSet = new java.util.HashSet[Row]()
      var currentRow: Row = null

      // Create a Hash set of buildKeys
      while (buildIter.hasNext) {
        currentRow = buildIter.next()
        val rowKey = buildSideKeyGenerator(currentRow)
        if(!rowKey.anyNull) {
          val keyExists = hashSet.contains(rowKey)
          if (!keyExists) {
            hashSet.add(rowKey)
          }
        }
      }

      val joinKeys = streamSideKeyGenerator()
      streamIter.filter(current => {
        !joinKeys(current).anyNull && hashSet.contains(joinKeys.currentValue)
      })
    }
  }
}

2.2、BroadcastHashJoin

 名约: 广播HashJoin,呵呵。
  是InnerHashJoin的实现。这里用到了concurrent并发里的future,异步的广播buildPlan的表执行后的的RDD。
  如果接收到了广播后的表,那么就用streamedPlan来匹配这个广播的表。
  实现是RDD的mapPartitions和HashJoin里的joinIterators最后生成join的结果。
case class BroadcastHashJoin(
     leftKeys: Seq[Expression],
     rightKeys: Seq[Expression],
     buildSide: BuildSide,
     left: SparkPlan,
     right: SparkPlan)(@transient sqlContext: SQLContext) extends BinaryNode with HashJoin {

  override def otherCopyArgs = sqlContext :: Nil

  override def outputPartitioning: Partitioning = left.outputPartitioning

  override def requiredChildDistribution =
    UnspecifiedDistribution :: UnspecifiedDistribution :: Nil

  @transient
  lazy val broadcastFuture = future {  //利用SparkContext广播表
    sqlContext.sparkContext.broadcast(buildPlan.executeCollect())
  }

  def execute() = {
    val broadcastRelation = Await.result(broadcastFuture, 5.minute)

    streamedPlan.execute().mapPartitions { streamedIter =>
      joinIterators(broadcastRelation.value.iterator, streamedIter) //调用joinIterators对每个分区map
    }
  }
}

2.3、ShuffleHashJoin

ShuffleHashJoin顾名思义就是需要shuffle数据,outputPartitioning是左孩子的的Partitioning。
会根据这个Partitioning进行shuffle。然后利用SparkContext里的zipPartitions方法对每个分区进行zip。
这里的requiredChildDistribution,的是ClusteredDistribution,这个会在HashPartitioning里面进行匹配。
关于这里面的分区这里不赘述,可以去org.apache.spark.sql.catalyst.plans.physical下的partitioning里面去查看。
case class ShuffledHashJoin(
    leftKeys: Seq[Expression],
    rightKeys: Seq[Expression],
    buildSide: BuildSide,
    left: SparkPlan,
    right: SparkPlan) extends BinaryNode with HashJoin {

  override def outputPartitioning: Partitioning = left.outputPartitioning

  override def requiredChildDistribution =
    ClusteredDistribution(leftKeys) :: ClusteredDistribution(rightKeys) :: Nil

  def execute() = {
    buildPlan.execute().zipPartitions(streamedPlan.execute()) {
      (buildIter, streamIter) => joinIterators(buildIter, streamIter)
    }
  }
}


未完待续 :)

原创文章,转载请注明:

转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory

本文链接地址:http://blog.csdn.net/oopsoom/article/details/38274621

注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。

image


你可能感兴趣的:(sql,sql,spark,spark,shark,catalyst)