题意:有T给测试数据,每组数据先给一个数字N,接下来的N行里,每行里有6个数字,分别是x1,y1,z1,x2,y2,z2,表示这个长方体x轴方向的范围从x1到x2,y坐标和z坐标类似,求至少有三个长方体相交的体积是多少。
因为Z轴的范围很小,所以我们将Z轴离散化之后,枚举Z[i]和Z[i+1]之间,矩形并时覆盖了三次以上的面积,那么这时候,就可以求出在Z[i]和Z[i+1]之间题目所求的体积,遍历一次Z坐标,也就得出了答案。如果求矩形并时覆盖超过三次的面积,与hdu 1255 覆盖的面积,是很类似的。
#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <algorithm> #include <map> using namespace std; #define LL(x) (x<<1) #define RR(x) (x<<1|1) #define MID(a,b) (a+((b-a)>>1)) typedef long long LL; const int N=2005; struct CUBE { int x1,y1,z1; int x2,y2,z2; void get() { scanf("%d%d%d",&x1,&y1,&z1); scanf("%d%d%d",&x2,&y2,&z2); } }cube[N]; struct Line { int x,y1,y2,flag; Line(){} Line(int a,int b,int c,int d) { x=a;y1=b;y2=c;flag=d; } bool operator<(const Line &b)const { return x<b.x; } }; struct node { int lft,rht,flag,len[4]; int mid(){return MID(lft,rht);} void init(){memset(len,0,sizeof(len));} }; vector<int> y,z; vector<Line> line; map<int,int> H; struct Segtree { node tree[N*4]; void calu(int ind) { if(tree[ind].flag>=3) { tree[ind].len[3]=tree[ind].len[0]; tree[ind].len[2]=tree[ind].len[1]=0; } else if(tree[ind].flag==2) { tree[ind].len[2]=tree[ind].len[0]; if(tree[ind].lft+1==tree[ind].rht) { tree[ind].len[1]=tree[ind].len[3]=0; } else { tree[ind].len[3]=tree[LL(ind)].len[3]+tree[RR(ind)].len[3] +tree[LL(ind)].len[2]+tree[RR(ind)].len[2] +tree[LL(ind)].len[1]+tree[RR(ind)].len[1]; tree[ind].len[1]=0; tree[ind].len[2]-=tree[ind].len[3]; } } else if(tree[ind].flag==1) { tree[ind].len[1]=tree[ind].len[0]; if(tree[ind].lft+1==tree[ind].rht) { tree[ind].len[2]=tree[ind].len[3]=0; } else { tree[ind].len[3]=tree[LL(ind)].len[3]+tree[RR(ind)].len[3] +tree[LL(ind)].len[2]+tree[RR(ind)].len[2]; tree[ind].len[2]=tree[LL(ind)].len[1]+tree[RR(ind)].len[1]; tree[ind].len[1]-=(tree[ind].len[2]+tree[ind].len[3]); } } else { if(tree[ind].lft+1==tree[ind].rht) { tree[ind].len[1]=tree[ind].len[2]=tree[ind].len[3]=0; } else { tree[ind].len[3]=tree[LL(ind)].len[3]+tree[RR(ind)].len[3]; tree[ind].len[2]=tree[LL(ind)].len[2]+tree[RR(ind)].len[2]; tree[ind].len[1]=tree[LL(ind)].len[1]+tree[RR(ind)].len[1]; } } } void build(int lft,int rht,int ind) { tree[ind].lft=lft; tree[ind].rht=rht; tree[ind].init(); tree[ind].flag=0; tree[ind].len[0]=y[rht]-y[lft]; if(lft+1!=rht) { int mid=tree[ind].mid(); build(lft,mid,LL(ind)); build(mid,rht,RR(ind)); } } void updata(int st,int ed,int ind,int valu) { int lft=tree[ind].lft,rht=tree[ind].rht; if(st<=lft&&rht<=ed) tree[ind].flag+=valu; else { int mid=tree[ind].mid(); if(st<mid) updata(st,ed,LL(ind),valu); if(ed>mid) updata(st,ed,RR(ind),valu); } calu(ind); } }seg; int main() { int t,t_cnt=0; scanf("%d",&t); while(t--) { y.clear(); z.clear(); line.clear(); H.clear(); int n; scanf("%d",&n); for(int i=0;i<n;i++) { cube[i].get(); y.push_back(cube[i].y1); y.push_back(cube[i].y2); z.push_back(cube[i].z1); z.push_back(cube[i].z2); } printf("Case %d: ",++t_cnt); if(n<3) {puts("0");continue;} else { sort(y.begin(),y.end()); sort(z.begin(),z.end()); y.erase(unique(y.begin(),y.end()),y.end()); z.erase(unique(z.begin(),z.end()),z.end()); for(int i=0;i<(int)y.size();i++) H[y[i]]=i; LL res=0; seg.build(0,(int)y.size()-1,1); for(int i=0;i<(int)z.size()-1;i++) { line.clear(); for(int j=0;j<n;j++) { if(cube[j].z1<=z[i]&&cube[j].z2>=z[i+1]) { line.push_back(Line(cube[j].x1,cube[j].y1,cube[j].y2,1)); line.push_back(Line(cube[j].x2,cube[j].y1,cube[j].y2,-1)); } } sort(line.begin(),line.end()); for(int j=0;j<(int)line.size();j++) { if(j!=0) res+=(z[i+1]-z[i])*(line[j].x-line[j-1].x)*(LL)seg.tree[1].len[3]; seg.updata(H[line[j].y1],H[line[j].y2],1,line[j].flag); } } printf("%I64d\n",res); } } return 0; }