之前写过一遍关于学习surf算法的blog:http://blog.csdn.net/sangni007/article/details/7482960
但是代码比较麻烦,而且其中还涉及到flann算法(其中的Random KDTree+KNN),虽然能看明白,但是比较费劲,今天在文档中找到一个简化版本:
1.SurfFeatureDetector detector( minHessian );构造surf检测器;
detector.detect( img_1, keypoints_1 ); detector.detect( img_2, keypoints_2 );检测
2.SurfDescriptorExtractor extractor;提取描述结构
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 ); extractor.compute( img_2, keypoints_2, descriptors_2 );
3.BruteForceMatcher< L2<float> > matcher;牛逼的匹配结构啊!!!!可以直接暴力测量距离
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
文档:http://opencv.itseez.com/modules/gpu/doc/feature_detection_and_description.html?highlight=bruteforce#gpu::BruteForceMatcher_GPU
PS:OpenCV 你是在太强悍了!!!只有我想不到,木有你办不到的啊! 我真心跪了!
/** * @file SURF_descriptor * @brief SURF detector + descritpor + BruteForce Matcher + drawing matches with OpenCV functions * @author A. Huaman */ #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" using namespace cv; using namespace std; void readme(); /** * @function main * @brief Main function */ int main( int argc, char** argv ) { //if( argc != 3 ) //{ return -1; } Mat img_1 = imread( "D:/src.jpg", CV_LOAD_IMAGE_GRAYSCALE ); Mat img_2 = imread( "D:/Demo.jpg", CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data ) { return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; double t=getTickCount(); SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 ); detector.detect( img_2, keypoints_2 ); //-- Step 2: Calculate descriptors (feature vectors) SurfDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 ); extractor.compute( img_2, keypoints_2, descriptors_2 ); //-- Step 3: Matching descriptor vectors with a brute force matcher BruteForceMatcher< L2<float> > matcher; std::vector< DMatch > matches; matcher.match( descriptors_1, descriptors_2, matches ); t=getTickCount()-t; t=t*1000/getTickFrequency(); //-- Draw matches Mat img_matches; drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches ); cout<<"Cost Time:"<<t<<endl; //-- Show detected matches imshow("Matches", img_matches ); waitKey(0); return 0; } /** * @function readme */ void readme() { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
图像中match的keypoints没有经过过滤。导致匹配点过多
文档地址:http://opencv.itseez.com/doc/tutorials/features2d/feature_description/feature_description.html?highlight=description
文档中还有一个版本带定位的和过滤Match的,
:http://opencv.itseez.com/doc/tutorials/features2d/feature_homography/feature_homography.html?highlight=drawmatchesflags