FragmentManager fragmentManager = getFragmentManager(); FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
每个transaction是一组同时执行的变化的集合。用add(), remove(), replace()方法,把所有需要的变化加进去,然后调用commit()方法,将这些变化应用。在commit()方法之前,你可以调用addToBackStack(),把这个transaction加入back stack中去,这个back stack是由activity管理的,当用户按返回键时,就会回到上一个fragment的状态。下面的代码非常典型,用一个新的fragment取代之前的fragment,并且将之前的状态存储在back stack中。
// Create new fragment and transaction Fragment newFragment = new ExampleFragment(); FragmentTransaction transaction = getFragmentManager().beginTransaction(); // Replace whatever is in the fragment_container view with this fragment, // and add the transaction to the back stack transaction.replace(R.id.fragment_container, newFragment); transaction.addToBackStack(null); // Commit the transaction transaction.commit();通过调用addToBackStack(),commit()的一系列转换作为一个transaction被存储在back stack中,用户按Back键可以返回上一个转换前的状态。
下面我们对上述代码中出现的函数进行分析,以此来逐步学习Fragment的管理机制。
getSupportFragmentManager():
public FragmentManager getSupportFragmentManager() { return mFragments; }该函数返回类型是FragmentManager,FragmentManager是一个抽象类,其实现类是FragmentManager.FragmentManagerImpl
beginTransaction():
该函数在FragmentManagerIMpl中的源码如下:
public FragmentTransaction beginTransaction() { return new BackStackRecord(this); }返回一个BackStackRecord对象,该对象是FragmentTranscation的一个子类。
final class BackStackRecord extends FragmentTransaction implements FragmentManager.BackStackEntry, Runnable {...}该类实现了一个重要的接口:FragmentManager.BackStackEntry, 该接口代表了fragment back stack的一个入口。可以用FragmentManager.getBackStackEntry()来检索BackStackEntry。
public FragmentTransaction replace(int containerViewId, Fragment fragment) { return replace(containerViewId, fragment, null); } public FragmentTransaction replace(int containerViewId, Fragment fragment, String tag) { if (containerViewId == 0) { throw new IllegalArgumentException("Must use non-zero containerViewId"); } doAddOp(containerViewId, fragment, tag, OP_REPLACE); return this; }我们发现,replace()最终调用的函数为doAddOp(int containerViewId, Fragment fragment, String tag, int opcmd), 将Fragment和对Fragment所进行的操作放到op链表中:
private void doAddOp(int containerViewId, Fragment fragment, String tag, int opcmd) { fragment.mFragmentManager = mManager; if (tag != null) { if (fragment.mTag != null && !tag.equals(fragment.mTag)) { throw new IllegalStateException("Can't change tag of fragment " + fragment + ": was " + fragment.mTag + " now " + tag); } fragment.mTag = tag; } if (containerViewId != 0) { if (fragment.mFragmentId != 0 && fragment.mFragmentId != containerViewId) { throw new IllegalStateException("Can't change container ID of fragment " + fragment + ": was " + fragment.mFragmentId + " now " + containerViewId); } fragment.mContainerId = fragment.mFragmentId = containerViewId; } Op op = new Op(); op.cmd = opcmd; op.fragment = fragment; addOp(op); }该函数首先设置fragment的mFragmentManager属性,然后再设置其mContainerId和mFragmentId,最后创建Op对象,然设置相应自段,其中cmd自动用来标识事务的类型,分为如下几类:
void addOp(Op op) { if (mHead == null) { mHead = mTail = op; } else { op.prev = mTail; mTail.next = op; mTail = op; } op.enterAnim = mEnterAnim; op.exitAnim = mExitAnim; op.popEnterAnim = mPopEnterAnim; op.popExitAnim = mPopExitAnim; mNumOp++; }该函数将Op对象添加到链表的末尾,并将mNumOp的值增一。
transaction.addToBackStack(null)设置了mAddToBackStack为true,源码如下:
public FragmentTransaction addToBackStack(String name) { if (!mAllowAddToBackStack) { throw new IllegalStateException( "This FragmentTransaction is not allowed to be added to the back stack."); } mAddToBackStack = true; mName = name; return this; }此函数将mAddToBackStack自段设置为true,并设置mName字段。
public int commit() { return commitInternal(false); } int commitInternal(boolean allowStateLoss) { if (mCommitted) throw new IllegalStateException("commit already called"); if (FragmentManagerImpl.DEBUG) { Log.v(TAG, "Commit: " + this); LogWriter logw = new LogWriter(TAG); PrintWriter pw = new PrintWriter(logw); dump(" ", null, pw, null); } mCommitted = true; if (mAddToBackStack) { mIndex = mManager.allocBackStackIndex(this); } else { mIndex = -1; } mManager.enqueueAction(this, allowStateLoss); return mIndex; }由于mAddToBackStack为true,所以会用FragmentManager为BackstackRecorder也即FragmentTransaction分配一个index,分配过程如下:
public int allocBackStackIndex(BackStackRecord bse) { synchronized (this) { if (mAvailBackStackIndices == null || mAvailBackStackIndices.size() <= 0) { if (mBackStackIndices == null) { mBackStackIndices = new ArrayList<BackStackRecord>(); } int index = mBackStackIndices.size(); if (DEBUG) Log.v(TAG, "Setting back stack index " + index + " to " + bse); mBackStackIndices.add(bse); return index; } else { int index = mAvailBackStackIndices.remove(mAvailBackStackIndices.size()-1); if (DEBUG) Log.v(TAG, "Adding back stack index " + index + " with " + bse); mBackStackIndices.set(index, bse); return index; } } }FragmentManager用mAvailBackStackIndices和mBackStackIndices两个数组来为BackStackRecord分配Index。mAvailBackStackIndices用来存储在mBackStackIndices中能够分配的Index,mBackStackIndices则用来保存BackStackRecord。这利用两个数组可以减少对mBackStackIndices的动态分配大小的次数,是一个以空间换时间的策略。上面的代码首先判断是否有可用的Index分配给BackStackRecord,若无则直接将BackStackRecord插入到mBackStackIndices;若存在的话则从mAvailBackStackIndices的队尾取出一个index,然后设置mBackStackIndices中该index下的值。
public void enqueueAction(Runnable action, boolean allowStateLoss) { if (!allowStateLoss) { checkStateLoss(); } synchronized (this) { if (mDestroyed || mActivity == null) { throw new IllegalStateException("Activity has been destroyed"); } if (mPendingActions == null) { mPendingActions = new ArrayList<Runnable>(); } mPendingActions.add(action); if (mPendingActions.size() == 1) { mActivity.mHandler.removeCallbacks(mExecCommit); mActivity.mHandler.post(mExecCommit); } } }
该函数首先进行状态监测,查看该Fagment所在的Activity的生命周期是否处于Saving Activity之前,因为Activity保存状态往往是由用户离开那个Activity所造成的,在此之后执行commit会丢失一些状态信息。针对这种情况,可以使用commitAllowingStateLoss().最后将BackStackRecord加入到执行队列中。当第一次往执行 队列中添加消息时,首先会从消息队列中所有callback属性为mExecCommit的消息删除,然后重新将mExecCommit添加到消息队列。mExecCommit的定义如下:
Runnable mExecCommit = new Runnable() { @Override public void run() { execPendingActions(); } };execPendingActions()只能在主线程内被调用,其内部通过一个循环对mPendingActions中的Actions进行执行。值得注意的是,每执行一次循环,mPendingActions中的所有Action都会被添加到一个临时数组中,然后这个数组被变量一遍以执行数组中的每个Runnable。同时,每个Runnable直接被调用了run,而不是开个线程执行的。当这个Runnable在执行的时候,mPendingActions数组可能会被添加内容。当某一时刻mPendingActions中的内容为空,则while循环退出。此部分代码如下:
public boolean execPendingActions() { if (mExecutingActions) { throw new IllegalStateException("Recursive entry to executePendingTransactions"); } if (Looper.myLooper() != mActivity.mHandler.getLooper()) { throw new IllegalStateException("Must be called from main thread of process"); } boolean didSomething = false; while (true) { int numActions; synchronized (this) { if (mPendingActions == null || mPendingActions.size() == 0) { break; } numActions = mPendingActions.size(); if (mTmpActions == null || mTmpActions.length < numActions) { mTmpActions = new Runnable[numActions]; } mPendingActions.toArray(mTmpActions); mPendingActions.clear(); mActivity.mHandler.removeCallbacks(mExecCommit); } //一次性执行完数组中所有的Action mExecutingActions = true; for (int i=0; i<numActions; i++) { mTmpActions[i].run(); mTmpActions[i] = null; } mExecutingActions = false; didSomething = true; } if (mHavePendingDeferredStart) { boolean loadersRunning = false; for (int i=0; i<mActive.size(); i++) { Fragment f = mActive.get(i); if (f != null && f.mLoaderManager != null) { loadersRunning |= f.mLoaderManager.hasRunningLoaders(); } } if (!loadersRunning) { mHavePendingDeferredStart = false; startPendingDeferredFragments(); } } return didSomething; }由于BackstackRecorder实现了Runnable,我们来看看BackStackRecorder中的run(),如下所示:
public void run() { if (FragmentManagerImpl.DEBUG) Log.v(TAG, "Run: " + this); if (mAddToBackStack) { if (mIndex < 0) { throw new IllegalStateException("addToBackStack() called after commit()"); } } bumpBackStackNesting(1); Op op = mHead; //遍历op,根据cmd的类型对Fragment和FragmentManager进行相应的设置 while (op != null) { switch (op.cmd) { case OP_ADD: { Fragment f = op.fragment; f.mNextAnim = op.enterAnim; //将Fragment添加到FragmentManager中,其源码显示是将Fragment添加到FragmentManager中的mActive数组中,并将Fragment添加到了数组mAdded中。 mManager.addFragment(f, false); } break; case OP_REPLACE: { Fragment f = op.fragment; if (mManager.mAdded != null) { //遍历已经添加的Fragment, for (int i=0; i<mManager.mAdded.size(); i++) { Fragment old = mManager.mAdded.get(i); if (FragmentManagerImpl.DEBUG) Log.v(TAG, "OP_REPLACE: adding=" + f + " old=" + old); //如果发现两个mContainerId一样,则进行特殊处理 if (f == null || old.mContainerId == f.mContainerId) { if (old == f) { //两个Fragment一样,则置空,保留old中的Fragment op.fragment = f = null; } else { // 将old fragment加入到 op.removed数组中,保留op中的Fragment if (op.removed == null) { op.removed = new ArrayList<Fragment>(); } op.removed.add(old); old.mNextAnim = op.exitAnim; if (mAddToBackStack) { //设置old Fragment在BackStack中的Number old.mBackStackNesting += 1; if (FragmentManagerImpl.DEBUG) Log.v(TAG, "Bump nesting of " + old + " to " + old.mBackStackNesting); } //对old Fragment设置相应的状态属性,如mAdded、mRemoving, 从FragmentManager中移除oldFrgment的相关属性 mManager.removeFragment(old, mTransition, mTransitionStyle); } } } } //将Fragment添加到FragmentManager中 if (f != null) { f.mNextAnim = op.enterAnim; mManager.addFragment(f, false); } } break; case OP_REMOVE: ...... } op = op.next; } //设置Fragment的当前状态,然后根据当前状态来回调Fragment的生命周期中的相关函数。此函数控制了Fragment的生命周期和Fragment的绘制,想要彻底理解Fragment的生命周期的同学可以认真研究此函数。 mManager.moveToState(mManager.mCurState, mTransition, mTransitionStyle, true); //将BackStackRecord加入到BackStack中,并回调onBackStackChanged if (mAddToBackStack) { mManager.addBackStackState(this); } }addBackStackState()的源码如下:
void addBackStackState(BackStackRecord state) { if (mBackStack == null) { mBackStack = new ArrayList<BackStackRecord>(); } mBackStack.add(state); //回调onBackStackChanged reportBackStackChanged(); }可以看到传说中的BackStack就是在这里被创建的, FragmentManager中的BackStack主要是用来存储FragmentTransaction的。
小结:
FragmentTransaction中的Op链用来保存add、remove、replace等action,在FragmentTransaction的run执行时,Op链会被变量以调整每个节点的内容。
FragmentManager使用一个BackStack来管理FragmentTransaction;使用mAdded数组来添加被add的Fragment,Fragment的创建、显示等行为都受FragmentManager的控制。
FragmentManager中的moveToState()是一个非常重要的函数,在FragmentTransaction run的时候被调用。下次我们将深入这个函数。