引言
前面两个实验,PL是传统的FPGA开发,PS是传统的嵌入式开发。
zynq7000EPP是xilinx比较高端的FPGA开发板,XC7Z020内部集成了两个cortexa9的硬核,外部有1G的DDR3,所以单纯做FPGA太浪费了。但是单纯用PS资源,就没必要用FPGA了,所以只有将两者结合使用才能体现其价值所在。
即,PS+PL。添加自己的一个IP到AXI总线上,然后通过SDK编码控制它的寄存器,这就是本小节的实验内容。
17.1 实验目的
1》 熟悉zynq7000 EPP资源和design suite
2》 PL编码,PS编码,实现一个简单逻辑。
17.2 实验环境
Board :ZYNQ7000 EPP
Device:XC7Z020CLG484ACX1221
Design suite:14.1 (PlanAhead+XPS+SDK)
17.3 实验准备
a) 会planAhead创建工程:ps_pl。
b) 简单了解和使用XPS和SDK
17.4 实验内容
a) 添加自己一个IP:rill_ip,挂到AXI上,此IP有一个output连到外部一个LED上。
b) 在SDK编写C代码控制这个IP的寄存器来控制此设备,进而控制LED的闪烁。
17.5 实验步骤
a) 打开planAhead,创建embedded新工程,添加PS7。
b) 打开XPS->hardware,添加自己的ip:rill_ip。
c) AXI4-lite.
d) 一个32位寄存器。
e) 生成driver。
f) 修改此IP的文件:MPD文件,rill_ip.vhd,user_logic.vhd。三个文件。
File:mpd,1个地方需要修改,如图:这3个文件的路径很深,不好找,截图上面有路径,方便很多。
可以根据截图找到对应位置,然后添加相应代码。
也可以参考附录代码。
File:rill_ip.vhd: 2个地方需要修改。
File:user_logic.vhd: 3个地方需要修改。
g) 将此ip添加到XPS工程。
h) 自动映射。注意port名称,ucf文件里要用。
i) 添加UCF文件,内容:ps_pl.ucf。
j) Create TOP HDL,然后生成bitstream。
k) 导出hardware,launch SDK。
l) 在SDK里创建helloword工程。
m) SDK编码,内容:helloworld.c。读写寄存器。
n) Program FPGA
o) Run AS,configure
p) Run
17.6 实验结果
看板子,DS18这个led会由亮变灭:串口也有打印。
附:
文件1:rill_ip_v2_1_0.mpd:
################################################################### ## ## Name : rill_ip ## Desc : Microprocessor Peripheral Description ## : Automatically generated by PsfUtility ## ################################################################### BEGIN rill_ip ## Peripheral Options OPTION IPTYPE = PERIPHERAL OPTION IMP_NETLIST = TRUE OPTION HDL = VHDL OPTION IP_GROUP = MICROBLAZE:USER OPTION DESC = RILL_IP OPTION ARCH_SUPPORT_MAP = (others=DEVELOPMENT) ## Bus Interfaces BUS_INTERFACE BUS = S_AXI, BUS_STD = AXI, BUS_TYPE = SLAVE ## Generics for VHDL or Parameters for Verilog PARAMETER C_S_AXI_DATA_WIDTH = 32, DT = INTEGER, BUS = S_AXI, ASSIGNMENT = CONSTANT PARAMETER C_S_AXI_ADDR_WIDTH = 32, DT = INTEGER, BUS = S_AXI, ASSIGNMENT = CONSTANT PARAMETER C_S_AXI_MIN_SIZE = 0x000001ff, DT = std_logic_vector, BUS = S_AXI PARAMETER C_USE_WSTRB = 0, DT = INTEGER PARAMETER C_DPHASE_TIMEOUT = 8, DT = INTEGER PARAMETER C_BASEADDR = 0xffffffff, DT = std_logic_vector, MIN_SIZE = 0x100, PAIR = C_HIGHADDR, ADDRESS = BASE, BUS = S_AXI PARAMETER C_HIGHADDR = 0x00000000, DT = std_logic_vector, PAIR = C_BASEADDR, ADDRESS = HIGH, BUS = S_AXI PARAMETER C_FAMILY = virtex6, DT = STRING PARAMETER C_NUM_REG = 1, DT = INTEGER PARAMETER C_NUM_MEM = 1, DT = INTEGER PARAMETER C_SLV_AWIDTH = 32, DT = INTEGER PARAMETER C_SLV_DWIDTH = 32, DT = INTEGER PARAMETER C_S_AXI_PROTOCOL = AXI4LITE, TYPE = NON_HDL, ASSIGNMENT = CONSTANT, DT = STRING, BUS = S_AXI ## Ports PORT led = "",DIR = O PORT S_AXI_ACLK = "", DIR = I, SIGIS = CLK, BUS = S_AXI PORT S_AXI_ARESETN = ARESETN, DIR = I, SIGIS = RST, BUS = S_AXI PORT S_AXI_AWADDR = AWADDR, DIR = I, VEC = [(C_S_AXI_ADDR_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI PORT S_AXI_AWVALID = AWVALID, DIR = I, BUS = S_AXI PORT S_AXI_WDATA = WDATA, DIR = I, VEC = [(C_S_AXI_DATA_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI PORT S_AXI_WSTRB = WSTRB, DIR = I, VEC = [((C_S_AXI_DATA_WIDTH/8)-1):0], ENDIAN = LITTLE, BUS = S_AXI PORT S_AXI_WVALID = WVALID, DIR = I, BUS = S_AXI PORT S_AXI_BREADY = BREADY, DIR = I, BUS = S_AXI PORT S_AXI_ARADDR = ARADDR, DIR = I, VEC = [(C_S_AXI_ADDR_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI PORT S_AXI_ARVALID = ARVALID, DIR = I, BUS = S_AXI PORT S_AXI_RREADY = RREADY, DIR = I, BUS = S_AXI PORT S_AXI_ARREADY = ARREADY, DIR = O, BUS = S_AXI PORT S_AXI_RDATA = RDATA, DIR = O, VEC = [(C_S_AXI_DATA_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI PORT S_AXI_RRESP = RRESP, DIR = O, VEC = [1:0], BUS = S_AXI PORT S_AXI_RVALID = RVALID, DIR = O, BUS = S_AXI PORT S_AXI_WREADY = WREADY, DIR = O, BUS = S_AXI PORT S_AXI_BRESP = BRESP, DIR = O, VEC = [1:0], BUS = S_AXI PORT S_AXI_BVALID = BVALID, DIR = O, BUS = S_AXI PORT S_AXI_AWREADY = AWREADY, DIR = O, BUS = S_AXI END
文件2:rill_ip.vhd
------------------------------------------------------------------------------ -- rill_ip.vhd - entity/architecture pair ------------------------------------------------------------------------------ -- IMPORTANT: -- DO NOT MODIFY THIS FILE EXCEPT IN THE DESIGNATED SECTIONS. -- -- SEARCH FOR --USER TO DETERMINE WHERE CHANGES ARE ALLOWED. -- -- TYPICALLY, THE ONLY ACCEPTABLE CHANGES INVOLVE ADDING NEW -- PORTS AND GENERICS THAT GET PASSED THROUGH TO THE INSTANTIATION -- OF THE USER_LOGIC ENTITY. ------------------------------------------------------------------------------ -- -- *************************************************************************** -- ** Copyright (c) 1995-2012 Xilinx, Inc. All rights reserved. ** -- ** ** -- ** Xilinx, Inc. ** -- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" ** -- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND ** -- ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, ** -- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, ** -- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION ** -- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, ** -- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE ** -- ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY ** -- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE ** -- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR ** -- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF ** -- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** -- ** FOR A PARTICULAR PURPOSE. ** -- ** ** -- *************************************************************************** -- ------------------------------------------------------------------------------ -- Filename: rill_ip.vhd -- Version: 1.00.a -- Description: Top level design, instantiates library components and user logic. -- Date: Mon Nov 05 13:53:37 2012 (by Create and Import Peripheral Wizard) -- VHDL Standard: VHDL'93 ------------------------------------------------------------------------------ -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_com" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port: "*_i" -- device pins: "*_pin" -- ports: "- Names begin with Uppercase" -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC>" ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library proc_common_v3_00_a; use proc_common_v3_00_a.proc_common_pkg.all; use proc_common_v3_00_a.ipif_pkg.all; library axi_lite_ipif_v1_01_a; use axi_lite_ipif_v1_01_a.axi_lite_ipif; library rill_ip_v1_00_a; use rill_ip_v1_00_a.user_logic; ------------------------------------------------------------------------------ -- Entity section ------------------------------------------------------------------------------ -- Definition of Generics: -- C_S_AXI_DATA_WIDTH -- AXI4LITE slave: Data width -- C_S_AXI_ADDR_WIDTH -- AXI4LITE slave: Address Width -- C_S_AXI_MIN_SIZE -- AXI4LITE slave: Min Size -- C_USE_WSTRB -- AXI4LITE slave: Write Strobe -- C_DPHASE_TIMEOUT -- AXI4LITE slave: Data Phase Timeout -- C_BASEADDR -- AXI4LITE slave: base address -- C_HIGHADDR -- AXI4LITE slave: high address -- C_FAMILY -- FPGA Family -- C_NUM_REG -- Number of software accessible registers -- C_NUM_MEM -- Number of address-ranges -- C_SLV_AWIDTH -- Slave interface address bus width -- C_SLV_DWIDTH -- Slave interface data bus width -- -- Definition of Ports: -- S_AXI_ACLK -- AXI4LITE slave: Clock -- S_AXI_ARESETN -- AXI4LITE slave: Reset -- S_AXI_AWADDR -- AXI4LITE slave: Write address -- S_AXI_AWVALID -- AXI4LITE slave: Write address valid -- S_AXI_WDATA -- AXI4LITE slave: Write data -- S_AXI_WSTRB -- AXI4LITE slave: Write strobe -- S_AXI_WVALID -- AXI4LITE slave: Write data valid -- S_AXI_BREADY -- AXI4LITE slave: Response ready -- S_AXI_ARADDR -- AXI4LITE slave: Read address -- S_AXI_ARVALID -- AXI4LITE slave: Read address valid -- S_AXI_RREADY -- AXI4LITE slave: Read data ready -- S_AXI_ARREADY -- AXI4LITE slave: read addres ready -- S_AXI_RDATA -- AXI4LITE slave: Read data -- S_AXI_RRESP -- AXI4LITE slave: Read data response -- S_AXI_RVALID -- AXI4LITE slave: Read data valid -- S_AXI_WREADY -- AXI4LITE slave: Write data ready -- S_AXI_BRESP -- AXI4LITE slave: Response -- S_AXI_BVALID -- AXI4LITE slave: Resonse valid -- S_AXI_AWREADY -- AXI4LITE slave: Wrte address ready ------------------------------------------------------------------------------ entity rill_ip is generic ( -- ADD USER GENERICS BELOW THIS LINE --------------- --USER generics added here -- ADD USER GENERICS ABOVE THIS LINE --------------- -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol parameters, do not add to or delete C_S_AXI_DATA_WIDTH : integer := 32; C_S_AXI_ADDR_WIDTH : integer := 32; C_S_AXI_MIN_SIZE : std_logic_vector := X"000001FF"; C_USE_WSTRB : integer := 0; C_DPHASE_TIMEOUT : integer := 8; C_BASEADDR : std_logic_vector := X"FFFFFFFF"; C_HIGHADDR : std_logic_vector := X"00000000"; C_FAMILY : string := "virtex6"; C_NUM_REG : integer := 1; C_NUM_MEM : integer := 1; C_SLV_AWIDTH : integer := 32; C_SLV_DWIDTH : integer := 32 -- DO NOT EDIT ABOVE THIS LINE --------------------- ); port ( -- ADD USER PORTS BELOW THIS LINE ------------------ --USER ports added here led : OUT std_logic; -- ADD USER PORTS ABOVE THIS LINE ------------------ -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol ports, do not add to or delete S_AXI_ACLK : in std_logic; S_AXI_ARESETN : in std_logic; S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_AWVALID : in std_logic; S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_WSTRB : in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0); S_AXI_WVALID : in std_logic; S_AXI_BREADY : in std_logic; S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_ARVALID : in std_logic; S_AXI_RREADY : in std_logic; S_AXI_ARREADY : out std_logic; S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_RRESP : out std_logic_vector(1 downto 0); S_AXI_RVALID : out std_logic; S_AXI_WREADY : out std_logic; S_AXI_BRESP : out std_logic_vector(1 downto 0); S_AXI_BVALID : out std_logic; S_AXI_AWREADY : out std_logic -- DO NOT EDIT ABOVE THIS LINE --------------------- ); attribute MAX_FANOUT : string; attribute SIGIS : string; attribute MAX_FANOUT of S_AXI_ACLK : signal is "10000"; attribute MAX_FANOUT of S_AXI_ARESETN : signal is "10000"; attribute SIGIS of S_AXI_ACLK : signal is "Clk"; attribute SIGIS of S_AXI_ARESETN : signal is "Rst"; end entity rill_ip; ------------------------------------------------------------------------------ -- Architecture section ------------------------------------------------------------------------------ architecture IMP of rill_ip is constant USER_SLV_DWIDTH : integer := C_S_AXI_DATA_WIDTH; constant IPIF_SLV_DWIDTH : integer := C_S_AXI_DATA_WIDTH; constant ZERO_ADDR_PAD : std_logic_vector(0 to 31) := (others => '0'); constant USER_SLV_BASEADDR : std_logic_vector := C_BASEADDR; constant USER_SLV_HIGHADDR : std_logic_vector := C_HIGHADDR; constant IPIF_ARD_ADDR_RANGE_ARRAY : SLV64_ARRAY_TYPE := ( ZERO_ADDR_PAD & USER_SLV_BASEADDR, -- user logic slave space base address ZERO_ADDR_PAD & USER_SLV_HIGHADDR -- user logic slave space high address ); constant USER_SLV_NUM_REG : integer := 1; constant USER_NUM_REG : integer := USER_SLV_NUM_REG; constant TOTAL_IPIF_CE : integer := USER_NUM_REG; constant IPIF_ARD_NUM_CE_ARRAY : INTEGER_ARRAY_TYPE := ( 0 => (USER_SLV_NUM_REG) -- number of ce for user logic slave space ); ------------------------------------------ -- Index for CS/CE ------------------------------------------ constant USER_SLV_CS_INDEX : integer := 0; constant USER_SLV_CE_INDEX : integer := calc_start_ce_index(IPIF_ARD_NUM_CE_ARRAY, USER_SLV_CS_INDEX); constant USER_CE_INDEX : integer := USER_SLV_CE_INDEX; ------------------------------------------ -- IP Interconnect (IPIC) signal declarations ------------------------------------------ signal ipif_Bus2IP_Clk : std_logic; signal ipif_Bus2IP_Resetn : std_logic; signal ipif_Bus2IP_Addr : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); signal ipif_Bus2IP_RNW : std_logic; signal ipif_Bus2IP_BE : std_logic_vector(IPIF_SLV_DWIDTH/8-1 downto 0); signal ipif_Bus2IP_CS : std_logic_vector((IPIF_ARD_ADDR_RANGE_ARRAY'LENGTH)/2-1 downto 0); signal ipif_Bus2IP_RdCE : std_logic_vector(calc_num_ce(IPIF_ARD_NUM_CE_ARRAY)-1 downto 0); signal ipif_Bus2IP_WrCE : std_logic_vector(calc_num_ce(IPIF_ARD_NUM_CE_ARRAY)-1 downto 0); signal ipif_Bus2IP_Data : std_logic_vector(IPIF_SLV_DWIDTH-1 downto 0); signal ipif_IP2Bus_WrAck : std_logic; signal ipif_IP2Bus_RdAck : std_logic; signal ipif_IP2Bus_Error : std_logic; signal ipif_IP2Bus_Data : std_logic_vector(IPIF_SLV_DWIDTH-1 downto 0); signal user_Bus2IP_RdCE : std_logic_vector(USER_NUM_REG-1 downto 0); signal user_Bus2IP_WrCE : std_logic_vector(USER_NUM_REG-1 downto 0); signal user_IP2Bus_Data : std_logic_vector(USER_SLV_DWIDTH-1 downto 0); signal user_IP2Bus_RdAck : std_logic; signal user_IP2Bus_WrAck : std_logic; signal user_IP2Bus_Error : std_logic; begin ------------------------------------------ -- instantiate axi_lite_ipif ------------------------------------------ AXI_LITE_IPIF_I : entity axi_lite_ipif_v1_01_a.axi_lite_ipif generic map ( C_S_AXI_DATA_WIDTH => IPIF_SLV_DWIDTH, C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH, C_S_AXI_MIN_SIZE => C_S_AXI_MIN_SIZE, C_USE_WSTRB => C_USE_WSTRB, C_DPHASE_TIMEOUT => C_DPHASE_TIMEOUT, C_ARD_ADDR_RANGE_ARRAY => IPIF_ARD_ADDR_RANGE_ARRAY, C_ARD_NUM_CE_ARRAY => IPIF_ARD_NUM_CE_ARRAY, C_FAMILY => C_FAMILY ) port map ( S_AXI_ACLK => S_AXI_ACLK, S_AXI_ARESETN => S_AXI_ARESETN, S_AXI_AWADDR => S_AXI_AWADDR, S_AXI_AWVALID => S_AXI_AWVALID, S_AXI_WDATA => S_AXI_WDATA, S_AXI_WSTRB => S_AXI_WSTRB, S_AXI_WVALID => S_AXI_WVALID, S_AXI_BREADY => S_AXI_BREADY, S_AXI_ARADDR => S_AXI_ARADDR, S_AXI_ARVALID => S_AXI_ARVALID, S_AXI_RREADY => S_AXI_RREADY, S_AXI_ARREADY => S_AXI_ARREADY, S_AXI_RDATA => S_AXI_RDATA, S_AXI_RRESP => S_AXI_RRESP, S_AXI_RVALID => S_AXI_RVALID, S_AXI_WREADY => S_AXI_WREADY, S_AXI_BRESP => S_AXI_BRESP, S_AXI_BVALID => S_AXI_BVALID, S_AXI_AWREADY => S_AXI_AWREADY, Bus2IP_Clk => ipif_Bus2IP_Clk, Bus2IP_Resetn => ipif_Bus2IP_Resetn, Bus2IP_Addr => ipif_Bus2IP_Addr, Bus2IP_RNW => ipif_Bus2IP_RNW, Bus2IP_BE => ipif_Bus2IP_BE, Bus2IP_CS => ipif_Bus2IP_CS, Bus2IP_RdCE => ipif_Bus2IP_RdCE, Bus2IP_WrCE => ipif_Bus2IP_WrCE, Bus2IP_Data => ipif_Bus2IP_Data, IP2Bus_WrAck => ipif_IP2Bus_WrAck, IP2Bus_RdAck => ipif_IP2Bus_RdAck, IP2Bus_Error => ipif_IP2Bus_Error, IP2Bus_Data => ipif_IP2Bus_Data ); ------------------------------------------ -- instantiate User Logic ------------------------------------------ USER_LOGIC_I : entity rill_ip_v1_00_a.user_logic generic map ( -- MAP USER GENERICS BELOW THIS LINE --------------- --USER generics mapped here -- MAP USER GENERICS ABOVE THIS LINE --------------- C_NUM_REG => USER_NUM_REG, C_SLV_DWIDTH => USER_SLV_DWIDTH ) port map ( -- MAP USER PORTS BELOW THIS LINE ------------------ --USER ports mapped here led => led, -- MAP USER PORTS ABOVE THIS LINE ------------------ Bus2IP_Clk => ipif_Bus2IP_Clk, Bus2IP_Resetn => ipif_Bus2IP_Resetn, Bus2IP_Data => ipif_Bus2IP_Data, Bus2IP_BE => ipif_Bus2IP_BE, Bus2IP_RdCE => user_Bus2IP_RdCE, Bus2IP_WrCE => user_Bus2IP_WrCE, IP2Bus_Data => user_IP2Bus_Data, IP2Bus_RdAck => user_IP2Bus_RdAck, IP2Bus_WrAck => user_IP2Bus_WrAck, IP2Bus_Error => user_IP2Bus_Error ); ------------------------------------------ -- connect internal signals ------------------------------------------ ipif_IP2Bus_Data <= user_IP2Bus_Data; ipif_IP2Bus_WrAck <= user_IP2Bus_WrAck; ipif_IP2Bus_RdAck <= user_IP2Bus_RdAck; ipif_IP2Bus_Error <= user_IP2Bus_Error; user_Bus2IP_RdCE <= ipif_Bus2IP_RdCE(USER_NUM_REG-1 downto 0); user_Bus2IP_WrCE <= ipif_Bus2IP_WrCE(USER_NUM_REG-1 downto 0); end IMP;
------------------------------------------------------------------------------ -- user_logic.vhd - entity/architecture pair ------------------------------------------------------------------------------ -- -- *************************************************************************** -- ** Copyright (c) 1995-2012 Xilinx, Inc. All rights reserved. ** -- ** ** -- ** Xilinx, Inc. ** -- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" ** -- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND ** -- ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, ** -- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, ** -- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION ** -- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, ** -- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE ** -- ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY ** -- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE ** -- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR ** -- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF ** -- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** -- ** FOR A PARTICULAR PURPOSE. ** -- ** ** -- *************************************************************************** -- ------------------------------------------------------------------------------ -- Filename: user_logic.vhd -- Version: 1.00.a -- Description: User logic. -- Date: Mon Nov 05 13:53:37 2012 (by Create and Import Peripheral Wizard) -- VHDL Standard: VHDL'93 ------------------------------------------------------------------------------ -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_com" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port: "*_i" -- device pins: "*_pin" -- ports: "- Names begin with Uppercase" -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC>" ------------------------------------------------------------------------------ -- DO NOT EDIT BELOW THIS LINE -------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library proc_common_v3_00_a; use proc_common_v3_00_a.proc_common_pkg.all; -- DO NOT EDIT ABOVE THIS LINE -------------------- --USER libraries added here ------------------------------------------------------------------------------ -- Entity section ------------------------------------------------------------------------------ -- Definition of Generics: -- C_NUM_REG -- Number of software accessible registers -- C_SLV_DWIDTH -- Slave interface data bus width -- -- Definition of Ports: -- Bus2IP_Clk -- Bus to IP clock -- Bus2IP_Resetn -- Bus to IP reset -- Bus2IP_Data -- Bus to IP data bus -- Bus2IP_BE -- Bus to IP byte enables -- Bus2IP_RdCE -- Bus to IP read chip enable -- Bus2IP_WrCE -- Bus to IP write chip enable -- IP2Bus_Data -- IP to Bus data bus -- IP2Bus_RdAck -- IP to Bus read transfer acknowledgement -- IP2Bus_WrAck -- IP to Bus write transfer acknowledgement -- IP2Bus_Error -- IP to Bus error response ------------------------------------------------------------------------------ entity user_logic is generic ( -- ADD USER GENERICS BELOW THIS LINE --------------- --USER generics added here -- ADD USER GENERICS ABOVE THIS LINE --------------- -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol parameters, do not add to or delete C_NUM_REG : integer := 1; C_SLV_DWIDTH : integer := 32 -- DO NOT EDIT ABOVE THIS LINE --------------------- ); port ( -- ADD USER PORTS BELOW THIS LINE ------------------ --USER ports added here led : out std_logic; -- ADD USER PORTS ABOVE THIS LINE ------------------ -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol ports, do not add to or delete Bus2IP_Clk : in std_logic; Bus2IP_Resetn : in std_logic; Bus2IP_Data : in std_logic_vector(C_SLV_DWIDTH-1 downto 0); Bus2IP_BE : in std_logic_vector(C_SLV_DWIDTH/8-1 downto 0); Bus2IP_RdCE : in std_logic_vector(C_NUM_REG-1 downto 0); Bus2IP_WrCE : in std_logic_vector(C_NUM_REG-1 downto 0); IP2Bus_Data : out std_logic_vector(C_SLV_DWIDTH-1 downto 0); IP2Bus_RdAck : out std_logic; IP2Bus_WrAck : out std_logic; IP2Bus_Error : out std_logic -- DO NOT EDIT ABOVE THIS LINE --------------------- ); attribute MAX_FANOUT : string; attribute SIGIS : string; attribute SIGIS of Bus2IP_Clk : signal is "CLK"; attribute SIGIS of Bus2IP_Resetn : signal is "RST"; end entity user_logic; ------------------------------------------------------------------------------ -- Architecture section ------------------------------------------------------------------------------ architecture IMP of user_logic is --USER signal declarations added here, as needed for user logic signal led_i : std_logic; ------------------------------------------ -- Signals for user logic slave model s/w accessible register example ------------------------------------------ signal slv_reg0 : std_logic_vector(C_SLV_DWIDTH-1 downto 0); signal slv_reg_write_sel : std_logic_vector(0 to 0); signal slv_reg_read_sel : std_logic_vector(0 to 0); signal slv_ip2bus_data : std_logic_vector(C_SLV_DWIDTH-1 downto 0); signal slv_read_ack : std_logic; signal slv_write_ack : std_logic; begin --USER logic implementation added here led_PROC : process (Bus2IP_Clk) is begin if Bus2IP_WrCE(0) = '1' then led_i <= '1'; else led_i <= '0'; end if; end process led_PROC; led <= led_i; ------------------------------------------ -- Example code to read/write user logic slave model s/w accessible registers -- -- Note: -- The example code presented here is to show you one way of reading/writing -- software accessible registers implemented in the user logic slave model. -- Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond -- to one software accessible register by the top level template. For example, -- if you have four 32 bit software accessible registers in the user logic, -- you are basically operating on the following memory mapped registers: -- -- Bus2IP_WrCE/Bus2IP_RdCE Memory Mapped Register -- "1000" C_BASEADDR + 0x0 -- "0100" C_BASEADDR + 0x4 -- "0010" C_BASEADDR + 0x8 -- "0001" C_BASEADDR + 0xC -- ------------------------------------------ slv_reg_write_sel <= Bus2IP_WrCE(0 downto 0); slv_reg_read_sel <= Bus2IP_RdCE(0 downto 0); slv_write_ack <= Bus2IP_WrCE(0); slv_read_ack <= Bus2IP_RdCE(0); -- implement slave model software accessible register(s) SLAVE_REG_WRITE_PROC : process( Bus2IP_Clk ) is begin if Bus2IP_Clk'event and Bus2IP_Clk = '1' then if Bus2IP_Resetn = '0' then slv_reg0 <= (others => '0'); else case slv_reg_write_sel is when "1" => for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop if ( Bus2IP_BE(byte_index) = '1' ) then slv_reg0(byte_index*8+7 downto byte_index*8) <= Bus2IP_Data(byte_index*8+7 downto byte_index*8); end if; end loop; when others => null; end case; end if; end if; end process SLAVE_REG_WRITE_PROC; -- implement slave model software accessible register(s) read mux SLAVE_REG_READ_PROC : process( slv_reg_read_sel, slv_reg0 ) is begin case slv_reg_read_sel is when "1" => slv_ip2bus_data <= slv_reg0; when others => slv_ip2bus_data <= (others => '0'); end case; end process SLAVE_REG_READ_PROC; ------------------------------------------ -- Example code to drive IP to Bus signals ------------------------------------------ IP2Bus_Data <= slv_ip2bus_data when slv_read_ack = '1' else (others => '0'); IP2Bus_WrAck <= slv_write_ack; IP2Bus_RdAck <= slv_read_ack; IP2Bus_Error <= '0'; end IMP;
文件4:UCF文件
NET rill_ip_0_led_pin IOSTANDARD=LVCMOS25 | LOC=V7;
/* * Copyright (c) 2009 Xilinx, Inc. All rights reserved. * * Xilinx, Inc. * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A * COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS * ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. * */ /* * helloworld.c: simple test application */ #include <stdio.h> #include "platform.h" #include "../../hello_world_bsp_0/ps7_cortexa9_0/include/xgpiops_hw.h" #include "../../hello_world_bsp_0/ps7_cortexa9_0/include/xparameters.h" #define LED_BASE_ADDR XPAR_RILL_IP_0_BASEADDR void my_process(void); int main() { init_platform(); my_process(); cleanup_platform(); return 0; } void my_process(void) { int ret = 0; printf("my_process start..."); ret = XGpioPs_ReadReg(LED_BASE_ADDR, 0); printf("read0 :%d\n\n",ret); XGpioPs_WriteReg(LED_BASE_ADDR, 0, 0); ret = XGpioPs_ReadReg(LED_BASE_ADDR, 0); printf("read1 :%d\n\n",ret); XGpioPs_WriteReg(LED_BASE_ADDR, 0, 1); ret = XGpioPs_ReadReg(LED_BASE_ADDR, 0); printf("read2 :%d\n\n",ret); } /************ EOF *************/
总结
这三个实验包含了高端FPGA的主要的三种开发方式。也是典型的使用方式。这三个小实验搞明白了的话,就算入门了吧。
再进一步的话,只不过是逻辑复杂些,代码量多一些。这就需要其他方面的知识和技能了。