Windows CE 进程、线程和内存管理(二)
作者:付林林
二、同步
在多数情况下,线程之间难免要相互通信、相互协调才能完成任务。比如,当有多个线程共同访问同一个资源时,就必须保证一个线程正读取这个资源数据的时候,其它线程不能够修改它。这就需要线程之间相互通信,了解对方的行为。再有当一个线程要准备执行下一个任务之前,它必须等待另一个线程终止才能运行,这也需要彼此相互通信。实际开发过程中,线程间需要同步的情况非常多。Windows CE.NET给我们提供了很多的同步机制,熟练的掌握这些机制并合理运用会使线程之间的同步更合理、更高效。进程间的通信机制在下一篇文章中讲解。
Windows CE.NET具有两种运行模式:用户模式和内核模式。并且允许一个运行于用户模式的应用程序随时切换为内核模式,或切换回来。线程同步的有些解决办法运行在用户模式,有些运行在内核模式。《Windows核心编程》上说从用户模式切换到内核模式再切换回来至少要1000个CPU周期。我查看过CE下API函数SetKMode的源码,这个函数用于在两种模式间切换,改变模式只需修改一些标志,至于需要多少个CPU周期很难确定。但至少可以肯定来回切换是需要一定时间的。所以在选择同步机制上应该优先考虑运行在用户模式的同步解决办法。
1、互锁函数
互锁函数运行在用户模式。它能保证当一个线程访问一个变量时,其它线程无法访问此变量,以确保变量值的唯一性。这种访问方式被称为原子访问。互锁函数及其功能见如下列表:
函数 | 参数和功能 |
InterlockedIncrement | 参数为PLONG类型。此函数使一个LONG变量增1 |
InterlockedDecrement | 参数为PLONG类型。此函数使一个LONG变量减1 |
InterlockedExchangeAdd | 参数1为PLONG类型,参数2为LONG类型。此函数将参数2赋给参数1指向的值 |
InterlockedExchange | 参数1为PLONG类型,参数2为LONG类型。此函数将参数2的值赋给参数1指向的值 |
InterlockedExchangePointer | 参数为PVOID* 类型,参数2为PVOID类型。此函数功能同上。具体参见帮助 |
InterlockedCompareExchange | 参数1为PLONG类型,参数2为LONG类型,参数3为LONG类型。此函数将参数1指向的值与参数3比较,相同则把参数2的值赋给参数1指向的值。不相同则不变 |
InterlockedCompareExchangePointer | 参数1为PVOID* 类型,参数2为PVOID类型,参数3为PVOID。此函数功能同上。具体参见帮助 |
2、临界区
临界区对象运行在用户模式。它能保证在临界区内所有被访问的资源不被其它线程访问,直到当前线程执行完临界区代码。除了API外,MFC也对临界区函数进行了封装。临界区相关函数:
void InitializeCriticalSection ( LPCRITICAL_SECTION ); void EnterCriticalSection ( LPCRITICAL_SECTION ); void LeaveCriticalSection ( LPCRITICAL_SECTION ); void DeleteCriticalSection ( LPCRITICAL_SECTION );举例如下:
void CriticalSectionExample (void) { CRITICAL_SECTION csMyCriticalSection; InitializeCriticalSection (&csMyCriticalSection); ///初始化临界区变量 __try { EnterCriticalSection (&csMyCriticalSection); ///开始保护机制 ///此处编写代码 } __finally ///异常处理,无论是否异常都执行此段代码 { LeaveCriticalSection (&csMyCriticalSection); ///撤销保护机制 } }MFC类使用更简单:
CCriticalSection cs; cs.Lock(); ///编写代码 cs.Unlock();使用临界区要注意的是避免死锁。当有两个线程,每个线程都有临界区,而且临界区保护的资源有相同的时候,这时就要在编写代码时多加考虑。
函数 | 参数和功能 |
WaitForSingleObject | 参数1为HANDLE类型,参数2为DWORD类型。此函数等待参数1标识的事件,等待时间为参数2的值,单位ms。如果不超时,当事件成为有信号状态时,线程唤醒继续运行。 |
WaitForMultipleObjects | 参数1为DWORD类型,参数2为HANDLE * 类型,参数3为BOOL类型,参数4为DWORD类型。此函数等待参数2指向的数组中包含的所有事件。如果不超时,当参数3为FALSE时,只要有一个事件处于有信号状态,函数就返回这个事件的索引。参数3为TRUE时,等待所有事件都处于有信号状态时才返回。 |
MsgWaitForMultipleObjects | 参数1为DWORD类型,参数2为LPHANDLE类型,参数3为BOOL类型,参数4为DWORD类型,参数5为DWORD类型。此函数功能上同WaitForMultipleObjects函数相似,只是多了一个唤醒掩码。唤醒掩码都是和消息有关的。此函数不但能够为事件等待,还能为特定的消息等待。其实这个函数就是专为等待消息而定义的。 |
MsgWaitForMultipleObjectsEx | 参数1为DWORD类型,参数2为LPHANDLE类型,参数3为DWORD类型,参数4为DWORD类型,参数5为DWORD类型。此函数是MsgWaitForMultipleObjects函数的扩展。将原来函数的参数3除掉,添加参数5为标志。标志有两个值:0或MWMO_INPUTAVAILABLE。 |
如果一个线程既要执行大量任务同时又要响应用户的按键消息,这两个专用于等待消息的函数将非常有用。
和事件有关的函数有:
HANDLE CreateEvent(LPSECURITY_ATTRIBUTES lpEventAttributes, BOOL bManualReset, BOOL bInitialState, LPTSTR lpName); BOOL SetEvent(HANDLE hEvent ); BOOL PulseEvent(HANDLE hEvent); BOOL ResetEvent(HANDLE hEvent); HANDLE OpenEvent(DWORD dwDesiredAccess, BOOL bInheritHandle, LPCTSTR lpName );事件对象是最常用的内核模式同步方法。它包含一个使用计数和两个BOOL变量。其中一个BOOL变量指定这个事件对象是自动重置还是手工重置。另一个BOOL变量指定当前事件对象处于有信号状态还是无信号状态。
HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpMutexAttributes, BOOL bInitialOwner, LPCTSTR lpName); BOOL ReleaseMutex(HANDLE hMutex);互斥对象包含一个引用计数,一个线程ID和一个递归计数。引用计数是所有内核对象都含有的。线程ID表示哪个线程正在使用互斥资源,当ID为0时,互斥对象发出信号。递归计数用于一个线程多次等待同一个互斥对象。函数CreateMutex创建一个互斥对象,参数1必须设置为NULL,参数2如果设置为FALSE,表示当前线程并不占有互斥资源,互斥对象的线程ID和递归计数都被设置为0,互斥对象处于有信号状态。如果设置为TRUE,表示当前线程将占有互斥资源,互斥对象的线程ID被设置为当前线程ID,递归计数被设置为1,互斥对象处于无信号状态。当调用等待函数时,等待函数检验互斥对象的线程ID是否为0,如果为0,说明当前没有线程访问互斥资源,内核将线程唤醒,并且将互斥对象的递归计数加1。当一个线程被唤醒后,必须调用函数ReleaseMutex将互斥对象的递归计数减1。如果一个线程多次调用等待函数,就必须以同样的次数调用ReleaseMutex函数。与其它Windows不同的是,和互斥相关的函数中没有OpenMutex函数。要在不同进程中访问同一互斥对象,调用CreateMutex函数,参数传递互斥对象的名称,返回这个互斥对象的句柄。
HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, LONG lInitialCount, LONG lMaximumCount, LPCTSTR lpName); BOOL ReleaseSemaphore(HANDLE hSemaphore, LONG lReleaseCount, LPLONG lpPreviousCount);函数CreateSemaphore的参数1为NULL,参数2为当前可用资源初始值,参数3为最大可用资源数,参数4为名字。当参数2的值等于0时,信标对象处于无信号状态,这时内核将调用等待函数的线程置于睡眠状态,如果参数2的值大于0,信标对象处于有信号状态,这时内核将调用等待函数的线程置于运行状态,并将信标对象的当前可用资源数减1。函数ReleaseSemaphore的参数1为信标对象的句柄,参数2为要释放的资源数,参数3返回原来可用资源数,调用此函数将当前可用资源数加上参数2的值。当一个线程访问完可用资源后,应该调用ReleaseSemaphore函数使当前可用资源数递增。要在不同进程中访问同一信标对象,调用CreateSemaphore函数并传递信标对象的名称,得到已经在其它进程创建的信标对象的句柄。CE下没有OpenSemaphore函数。另外我还要说明一点,等待函数默认将信标对象的当前可用资源数减1,但线程可能一次使用多个资源,这就可能出现问题了。为避免问题出现,应该遵守一个线程只使用一个资源的原则。
HANDLE WINAPI CreateMsgQueue(LPCWSTR lpszName, LPMSGQUEUEOPTIONS lpOptions); BOOL WINAPI CloseMsgQueue(HANDLE hMsgQ); BOOL GetMsgQueueInfo(HANDLE hMsgQ, LPMSGQUEUEINFO lpInfo); HANDLE WINAPI OpenMsgQueue(HANDLE hSrcProc, HANDLE hMsgQ, LPMSGQUEUEOPTIONS lpOptions); BOOL ReadMsgQueue(HANDLE hMsgQ, LPVOID lpBuffer, DWORD cbBufferSize, LPDWORD lpNumberOfBytesRead, DWORD dwTimeout, DWORD *pdwFlags); BOOL WINAPI WriteMsgQueue(HANDLE hMsgQ, LPVOID lpBuffer, DWORD cbDataSize, DWORD dwTimeout, DWORD dwFlags);
使用CreateMsgQueue函数创建一个消息队列,传递一个MSGQUEUEOPTIONS结构指针。在这个结构中设置标志(允许队列缓冲区动态改变大小,允许直接读或者写操作而不管之前是否有过写操作或读操作)、队列允许的最大消息数、队列属性(只读或者只写)。使用WriteMsgQueue函数把一个消息写入到消息队列中。传递一个消息队列的缓冲区、消息数据的大小、写入缓冲区的超时值、标志。使用ReadMsgQueue函数把一个消息从消息队列中读出。使用CloseMsgQueue函数关闭消息队列缓冲区。使用OpenMsgQueue函数能够打开其它进程中创建的消息队列。另外可以用等待函数等待消息队列的变化。当消息队列由没有消息到有消息时,或由满消息到不满消息时唤醒调用等待函数的线程。关于消息队列我并没有实验过,MSDN上有几个简单的例子。
写作时间:2004-06-04
未经本文作者同意,不准擅自转载本篇文章。联系作者请邮至 [email protected] 或[email protected]
引用http://www.vckbase.com/document/viewdoc/?id=1155