Linux 2.6如何使用时间中断来完成进程调度

进程调度:

Linux里的进程管理调度,如何调度使用不同的进程占用不同的时间片段,主要在核心函数 scheduler_tick (kernel/sched.c)

 

硬中断触发:

对操作系统来说,中断是一种电信号,由硬件设备产生,并直接送入中断控制器(如8259A)的输入引脚上,然后再由中断控制器向处理器发送相应的信号。处理器一经检测到

该信号,便中断自己当前正在处理的工作,转而去处理中断。此后,处理器会通知 OS 已经产生中断。这样,OS 就可以对这个中断进行适当的处理了。不同的设备对应的中断不同,而每个中断都通过一个唯一的数字标识。这些中断值通常被称为中断请求线,这里所说的中断就是硬中断,也是我们常说的中断的上半部分。


硬中断的执行:

不同的架构在linux上是不同的执行,在x86架构中,源码程序在/arch/x86_64/kernel/irq.c 

asmlinkage unsigned int do_IRQ(struct pt_regs *regs)
{	
	/* high bit used in ret_from_ code  */
	unsigned irq = ~regs->orig_rax;

	if (unlikely(irq >= NR_IRQS)) {
		printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
					__FUNCTION__, irq);
		BUG();
	}

	exit_idle();
	irq_enter();
#ifdef CONFIG_DEBUG_STACKOVERFLOW
	stack_overflow_check(regs);
#endif
	__do_IRQ(irq, regs);
	irq_exit();

	return 1;
}
其中  __do_IRQ() 是处理不同的中断信号的函数, 而在irq_exit()里所处理的是中断的下半部分,也就是我们常说的软中断。

在__do_IRQ()的处理函数中,handle_IRQ_event (irq/handle.c)主要负责调用不同的中断信号所注册的函数。

/**
 * handle_IRQ_event - irq action chain handler
 * @irq:	the interrupt number
 * @regs:	pointer to a register structure
 * @action:	the interrupt action chain for this irq
 *
 * Handles the action chain of an irq event
 */
irqreturn_t handle_IRQ_event(unsigned int irq, struct pt_regs *regs,
			     struct irqaction *action)
{
	irqreturn_t ret, retval = IRQ_NONE;
	unsigned int status = 0;

	handle_dynamic_tick(action);

	if (!(action->flags & IRQF_DISABLED))
		local_irq_enable_in_hardirq();

	do {
		ret = action->handler(irq, action->dev_id, regs);
		if (ret == IRQ_HANDLED)
			status |= action->flags;
		retval |= ret;
		action = action->next;
	} while (action);

	if (status & IRQF_SAMPLE_RANDOM)
		add_interrupt_randomness(irq);
	local_irq_disable();

	return retval;
}

其中struct irqaction 是就是每个不同的硬件中断所注册的处理函数


我们在来看看时间中断里所注册的处理函数,x86_64/kernel/time.c

static struct irqaction irq0 = {
	timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
};

timer_interrupt 函数

static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	if (apic_runs_main_timer > 1)
		return IRQ_HANDLED;
	main_timer_handler(regs);
#ifdef CONFIG_X86_LOCAL_APIC
	if (using_apic_timer)
		smp_send_timer_broadcast_ipi();
#endif
	return IRQ_HANDLED;
}

在 main_timer_handler 函数里,我们可以清楚的看到

#ifndef CONFIG_SMP
	update_process_times(user_mode(regs));
#endif

函数update_process_times 里显示的调用了 scheduler_tick

/*
 * Called from the timer interrupt handler to charge one tick to the current 
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
	if (user_tick)
		account_user_time(p, jiffies_to_cputime(1));
	else
		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_tick);
	scheduler_tick();
 	run_posix_cpu_timers(p);
}

我们可以看到在时间中断里会调用进程调度,并且在中断的上半部分,也就是不可被打断。


你可能感兴趣的:(linux,timer,struct,user,action,structure)