update1:第二个实现,读操作不必要采用独占锁,缓存显然是读多于写,读的时候一开始用独占锁是考虑到要递增计数和更新时间戳要加锁,不过这两个变量都是采用原子变量,因此也不必采用独占锁,修改为读写锁。
update2:一个错误,老是写错关键字啊, LRUCache的 maxCapacity应该声明为volatile,而不是transient。
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示:
LRU算法还可以通过计数来实现,缓存存储的位置附带一个计数器,当命中时将计数器加1,替换时就查找计数最小的位置并替换,结合访问时间戳来实现。这种算法比较适合缓存数据量较小的场景,显然,遍历查找计数最小位置的时间复杂度为O(n)。我实现了一个,结合了访问时间戳,当最小计数大于MINI_ACESS时(这个参数的调整对命中率有较大影响),就移除最久没有被访问的项:
update2:一个错误,老是写错关键字啊, LRUCache的 maxCapacity应该声明为volatile,而不是transient。
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示:
import
java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map;
/**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap < K, V > extends LinkedHashMap < K, V > {
private final int maxCapacity;
private static final float DEFAULT_LOAD_FACTOR = 0.75f ;
private final Lock lock = new ReentrantLock();
public LRULinkedHashMap( int maxCapacity) {
super (maxCapacity, DEFAULT_LOAD_FACTOR, true );
this .maxCapacity = maxCapacity;
}
@Override
protected boolean removeEldestEntry(java.util.Map.Entry < K, V > eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super .containsKey(key);
} finally {
lock.unlock();
}
}
@Override
public V get(Object key) {
try {
lock.lock();
return super .get(key);
} finally {
lock.unlock();
}
}
@Override
public V put(K key, V value) {
try {
lock.lock();
return super .put(key, value);
} finally {
lock.unlock();
}
}
public int size() {
try {
lock.lock();
return super .size();
} finally {
lock.unlock();
}
}
public void clear() {
try {
lock.lock();
super .clear();
} finally {
lock.unlock();
}
}
public Collection < Map.Entry < K, V >> getAll() {
try {
lock.lock();
return new ArrayList < Map.Entry < K, V >> ( super .entrySet());
} finally {
lock.unlock();
}
}
}
如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map;
/**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap < K, V > extends LinkedHashMap < K, V > {
private final int maxCapacity;
private static final float DEFAULT_LOAD_FACTOR = 0.75f ;
private final Lock lock = new ReentrantLock();
public LRULinkedHashMap( int maxCapacity) {
super (maxCapacity, DEFAULT_LOAD_FACTOR, true );
this .maxCapacity = maxCapacity;
}
@Override
protected boolean removeEldestEntry(java.util.Map.Entry < K, V > eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super .containsKey(key);
} finally {
lock.unlock();
}
}
@Override
public V get(Object key) {
try {
lock.lock();
return super .get(key);
} finally {
lock.unlock();
}
}
@Override
public V put(K key, V value) {
try {
lock.lock();
return super .put(key, value);
} finally {
lock.unlock();
}
}
public int size() {
try {
lock.lock();
return super .size();
} finally {
lock.unlock();
}
}
public void clear() {
try {
lock.lock();
super .clear();
} finally {
lock.unlock();
}
}
public Collection < Map.Entry < K, V >> getAll() {
try {
lock.lock();
return new ArrayList < Map.Entry < K, V >> ( super .entrySet());
} finally {
lock.unlock();
}
}
}
LRU算法还可以通过计数来实现,缓存存储的位置附带一个计数器,当命中时将计数器加1,替换时就查找计数最小的位置并替换,结合访问时间戳来实现。这种算法比较适合缓存数据量较小的场景,显然,遍历查找计数最小位置的时间复杂度为O(n)。我实现了一个,结合了访问时间戳,当最小计数大于MINI_ACESS时(这个参数的调整对命中率有较大影响),就移除最久没有被访问的项:
package
net.rubyeye.codelib.util.concurrency.cache;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
*
* @author dennis 类说明:当缓存数目不多时,才用缓存计数的传统LRU算法
* @param <K>
* @param <V>
*/
public class LRUCache < K, V > implements Serializable {
private static final int DEFAULT_CAPACITY = 100 ;
protected Map < K, ValueEntry > map;
private final ReadWriteLock lock = new ReentrantReadWriteLock();
private final Lock readLock = lock.readLock();
private final Lock writeLock = lock.writeLock();
private final volatile int maxCapacity; //保持可见性
public static int MINI_ACCESS = 5 ;
public LRUCache() {
this (DEFAULT_CAPACITY);
}
public LRUCache( int capacity) {
if (capacity <= 0 )
throw new RuntimeException( " 缓存容量不得小于0 " );
this .maxCapacity = capacity;
this .map = new HashMap < K, ValueEntry > (maxCapacity);
}
public boolean ContainsKey(K key) {
try {
readLock.lock();
return this .map.containsKey(key);
} finally {
readLock.unlock();
}
}
public V put(K key, V value) {
try {
writeLock.lock();
if ((map.size() > maxCapacity - 1 ) && ! map.containsKey(key)) {
// System.out.println("开始");
Set < Map.Entry < K, ValueEntry >> entries = this .map.entrySet();
removeRencentlyLeastAccess(entries);
}
ValueEntry new_value = new ValueEntry(value);
ValueEntry old_value = map.put(key, new_value);
if (old_value != null ) {
new_value.count = old_value.count;
return old_value.value;
} else
return null ;
} finally {
writeLock.unlock();
}
}
/**
* 移除最近最少访问
*/
protected void removeRencentlyLeastAccess(
Set < Map.Entry < K, ValueEntry >> entries) {
// 最小使用次数
long least = 0 ;
// 访问时间最早
long earliest = 0 ;
K toBeRemovedByCount = null ;
K toBeRemovedByTime = null ;
Iterator < Map.Entry < K, ValueEntry >> it = entries.iterator();
if (it.hasNext()) {
Map.Entry < K, ValueEntry > valueEntry = it.next();
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
earliest = valueEntry.getValue().lastAccess.get();
toBeRemovedByTime = valueEntry.getKey();
}
while (it.hasNext()) {
Map.Entry < K, ValueEntry > valueEntry = it.next();
if (valueEntry.getValue().count.get() < least) {
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
}
if (valueEntry.getValue().lastAccess.get() < earliest) {
earliest = valueEntry.getValue().count.get();
toBeRemovedByTime = valueEntry.getKey();
}
}
// System.out.println("remove:" + toBeRemoved);
// 如果最少使用次数大于MINI_ACCESS,那么移除访问时间最早的项(也就是最久没有被访问的项)
if (least > MINI_ACCESS) {
map.remove(toBeRemovedByTime);
} else {
map.remove(toBeRemovedByCount);
}
}
public V get(K key) {
try {
readLock.lock();
V value = null ;
ValueEntry valueEntry = map.get(key);
if (valueEntry != null ) {
// 更新访问时间戳
valueEntry.updateLastAccess();
// 更新访问次数
valueEntry.count.incrementAndGet();
value = valueEntry.value;
}
return value;
} finally {
readLock.unlock();
}
}
public void clear() {
try {
writeLock.lock();
map.clear();
} finally {
writeLock.unlock();
}
}
public int size() {
try {
readLock.lock();
return map.size();
} finally {
readLock.unlock();
}
}
public long getCount(K key) {
try {
readLock.lock();
ValueEntry valueEntry = map.get(key);
if (valueEntry != null ) {
return valueEntry.count.get();
}
return 0 ;
} finally {
readLock.unlock();
}
}
public Collection < Map.Entry < K, V >> getAll() {
try {
readLock.lock();
Set < K > keys = map.keySet();
Map < K, V > tmp = new HashMap < K, V > ();
for (K key : keys) {
tmp.put(key, map.get(key).value);
}
return new ArrayList < Map.Entry < K, V >> (tmp.entrySet());
} finally {
readLock.unlock();
}
}
class ValueEntry implements Serializable {
private V value;
private AtomicLong count;
private AtomicLong lastAccess;
public ValueEntry(V value) {
this .value = value;
this .count = new AtomicLong( 0 );
lastAccess = new AtomicLong(System.nanoTime());
}
public void updateLastAccess() {
this .lastAccess.set(System.nanoTime());
}
}
}
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
*
* @author dennis 类说明:当缓存数目不多时,才用缓存计数的传统LRU算法
* @param <K>
* @param <V>
*/
public class LRUCache < K, V > implements Serializable {
private static final int DEFAULT_CAPACITY = 100 ;
protected Map < K, ValueEntry > map;
private final ReadWriteLock lock = new ReentrantReadWriteLock();
private final Lock readLock = lock.readLock();
private final Lock writeLock = lock.writeLock();
private final volatile int maxCapacity; //保持可见性
public static int MINI_ACCESS = 5 ;
public LRUCache() {
this (DEFAULT_CAPACITY);
}
public LRUCache( int capacity) {
if (capacity <= 0 )
throw new RuntimeException( " 缓存容量不得小于0 " );
this .maxCapacity = capacity;
this .map = new HashMap < K, ValueEntry > (maxCapacity);
}
public boolean ContainsKey(K key) {
try {
readLock.lock();
return this .map.containsKey(key);
} finally {
readLock.unlock();
}
}
public V put(K key, V value) {
try {
writeLock.lock();
if ((map.size() > maxCapacity - 1 ) && ! map.containsKey(key)) {
// System.out.println("开始");
Set < Map.Entry < K, ValueEntry >> entries = this .map.entrySet();
removeRencentlyLeastAccess(entries);
}
ValueEntry new_value = new ValueEntry(value);
ValueEntry old_value = map.put(key, new_value);
if (old_value != null ) {
new_value.count = old_value.count;
return old_value.value;
} else
return null ;
} finally {
writeLock.unlock();
}
}
/**
* 移除最近最少访问
*/
protected void removeRencentlyLeastAccess(
Set < Map.Entry < K, ValueEntry >> entries) {
// 最小使用次数
long least = 0 ;
// 访问时间最早
long earliest = 0 ;
K toBeRemovedByCount = null ;
K toBeRemovedByTime = null ;
Iterator < Map.Entry < K, ValueEntry >> it = entries.iterator();
if (it.hasNext()) {
Map.Entry < K, ValueEntry > valueEntry = it.next();
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
earliest = valueEntry.getValue().lastAccess.get();
toBeRemovedByTime = valueEntry.getKey();
}
while (it.hasNext()) {
Map.Entry < K, ValueEntry > valueEntry = it.next();
if (valueEntry.getValue().count.get() < least) {
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
}
if (valueEntry.getValue().lastAccess.get() < earliest) {
earliest = valueEntry.getValue().count.get();
toBeRemovedByTime = valueEntry.getKey();
}
}
// System.out.println("remove:" + toBeRemoved);
// 如果最少使用次数大于MINI_ACCESS,那么移除访问时间最早的项(也就是最久没有被访问的项)
if (least > MINI_ACCESS) {
map.remove(toBeRemovedByTime);
} else {
map.remove(toBeRemovedByCount);
}
}
public V get(K key) {
try {
readLock.lock();
V value = null ;
ValueEntry valueEntry = map.get(key);
if (valueEntry != null ) {
// 更新访问时间戳
valueEntry.updateLastAccess();
// 更新访问次数
valueEntry.count.incrementAndGet();
value = valueEntry.value;
}
return value;
} finally {
readLock.unlock();
}
}
public void clear() {
try {
writeLock.lock();
map.clear();
} finally {
writeLock.unlock();
}
}
public int size() {
try {
readLock.lock();
return map.size();
} finally {
readLock.unlock();
}
}
public long getCount(K key) {
try {
readLock.lock();
ValueEntry valueEntry = map.get(key);
if (valueEntry != null ) {
return valueEntry.count.get();
}
return 0 ;
} finally {
readLock.unlock();
}
}
public Collection < Map.Entry < K, V >> getAll() {
try {
readLock.lock();
Set < K > keys = map.keySet();
Map < K, V > tmp = new HashMap < K, V > ();
for (K key : keys) {
tmp.put(key, map.get(key).value);
}
return new ArrayList < Map.Entry < K, V >> (tmp.entrySet());
} finally {
readLock.unlock();
}
}
class ValueEntry implements Serializable {
private V value;
private AtomicLong count;
private AtomicLong lastAccess;
public ValueEntry(V value) {
this .value = value;
this .count = new AtomicLong( 0 );
lastAccess = new AtomicLong(System.nanoTime());
}
public void updateLastAccess() {
this .lastAccess.set(System.nanoTime());
}
}
}