深入浅出TCP/IP中的send和recv

先明确一个概念:每个TCP socket在内核中都有一个发送缓冲区和一个接收缓冲区,TCP的全双工的工作模式以及TCP的滑动窗口便是依赖于这两个独立的buffer以及此buffer的填充状态。接收缓冲区把 数据缓存入内核,应用进程一直没有调用read进行读取的话,此数据会一直缓存在相应 socket的接收缓冲区内。再啰嗦一点,不管进程是否读取socket,对端发来的数据都会经由内核接收并且缓存到socket的内核接收缓冲区之中。 read所做的工作,就是把内核缓冲区中的数据拷贝到应用层用户的buffer里面,仅此而已。进程调用send发送的数据的时候,最简单情况(也是一般情况),将数据拷贝进入socket的内核发送缓冲区之中,然后send便会在上层返回。换句话说,send返回之时,数据不一定会发送到对端去(和 write写文件有点类似),send仅仅是把应用层buffer的数据拷贝进socket的内核发送buffer中。后续我会专门用一篇文章介绍 read和send所关联的内核动作。每个UDP socket都有一个接收缓冲区,没有发送缓冲区,从概念上来说就是只要有数据就发,不管对方是否可以正确接收,所以不缓冲,不需要发送缓冲区。

  接收缓冲区被TCP和UDP用来缓存网络上来的数据,一直保存到应用进程读走为止。对于TCP,如果应用进程一直没有读取,buffer满了之后,发生的动作是:通知对端TCP协议中的窗口关闭。这个便是滑动窗口的实现。保证TCP套接口接收缓冲区不会溢出,从而保证了TCP是可靠传输。因为对方不允许发出超过所通告窗口大小的数据。 这就是TCP的流量控制,如果对方无视窗口大小而发出了超过窗口大小的数据,则接收方TCP将丢弃它。 UDP:当套接口接收缓冲区满时,新来的数据报无法进入接收缓冲区,此数据报就被丢弃。UDP是没有流量控制的;快的发送者可以很容易地就淹没慢的接收者,导致接收方的UDP丢弃数据报。

  以上便是TCP可靠,UDP不可靠的实现。

  TCP_CORK TCP_NODELAY

  这两个选项是互斥的,打开或者关闭TCP的nagle算法,下面用场景来解释

  典型的webserver向客户端的应答,应用层代码实现流程粗略来说,一般如下所示:

  if(条件1){

  向buffer_last_modified填充协议内容“Last-Modified: Sat, 04 May 2012 05:28:58 GMT”;

  send(buffer_last_modified);

  }

  if(条件2){

  向buffer_expires填充协议内容“Expires: Mon, 14 Aug 2023 05:17:29 GMT”;

  send(buffer_expires);

  }

  。。。

  if(条件N){

  向buffer_N填充协议内容“。。。”;

  send(buffer_N);

  }

  对于这样的实现,当前的http应答在执行这段代码时,假设有M(M<=N)个条件都满足,那么会有连续的M个send调用,那是不是下层会依次向客户端发出M个TCP包呢?答案是否定的,包的数目在应用层是无法控制的,并且应用层也是不需要控制的。

  我用下列四个假设场景来解释一下这个答案

  由于TCP是流式的,对于TCP而言,每个TCP连接只有syn开始和fin结尾,中间发送的数据是没有边界的,多个连续的send所干的事情仅仅是:

  假如socket的文件描述符被设置为阻塞方式,而且发送缓冲区还有足够空间容纳这个send所指示的应用层buffer的全部数据,那么把这些数据从应用层的buffer,拷贝到内核的发送缓冲区,然后返回。

  假如socket的文件描述符被设置为阻塞方式,但是发送缓冲区没有足够空间容纳这个send所指示的应用层buffer的全部数据,那么能拷贝多少就拷贝多少,然后进程挂起,等到TCP对端的接收缓冲区有空余空间时,通过滑动窗口协议(ACK包的又一个作用----打开窗口)通知TCP本端:“亲,我已经做好准备,您现在可以继续向我发送X个字节的数据了”,然后本端的内核唤醒进程,继续向发送缓冲区拷贝剩余数据,并且内核向TCP对端发送TCP数据,如果send所指示的应用层buffer中的数据在本次仍然无法全部拷贝完,那么过程重复。。。直到所有数据全部拷贝完,返回。

  请注意,对于send的行为,我用了“拷贝一次”,send和下层是否发送数据包,没有任何关系。

  假如socket的文件描述符被设置为非阻塞方式,而且发送缓冲区还有足够空间容纳这个send所指示的应用层buffer的全部数据,那么把这些数据从应用层的buffer,拷贝到内核的发送缓冲区,然后返回。

  假如socket的文件描述符被设置为非阻塞方式,但是发送缓冲区没有足够空间容纳这个send所指示的应用层buffer的全部数据,那么能拷贝多少就拷贝多少,然后返回拷贝的字节数。多涉及一点,返回之后有两种处理方式:

  1.死循环,一直调用send,持续测试,一直到结束(基本上不会这么搞)。

  2.非阻塞搭配epoll或者select,用这两种东西来测试socket是否达到可发送的活跃状态,然后调用send(高性能服务器必需的处理方式)。

  综上,以及请参考本文前述的SO_RCVBUF和SO_SNDBUF,你会发现,在实际场景中,你能发出多少TCP包以及每个包承载多少数据,除了受到自身服务器配置和环境带宽影响,对端的接收状态也能影响你的发送状况。

  至于为什么说“应用层也是不需要控制发送行为的”,这个说法的原因是:

  软件系统分层处理、分模块处理各种软件行为,目的就是为了各司其职,分工。应用层只关心业务实现,控制业务。数据传输由专门的层面去处理,这样应用层开发的规模和复杂程度会大为降低,开发和维护成本也会相应降低。

  再回到发送的话题上来:)之前说应用层无法精确控制和完全控制发送行为,那是不是就是不控制了?非也!虽然无法控制,但也要尽量控制!

  如何尽量控制?现在引入本节主题----TCP_CORK和TCP_NODELAY。

  cork:塞子,塞住

  nodelay:不要延迟

  TCP_CORK:尽量向发送缓冲区中攒数据,攒到多了再发送,这样网络的有效负载会升高。简单粗暴地解释一下这个有效负载的问题。假如每个包中只有一个字节的数据,为了发送这一个字节的数据,再给这一个字节外面包装一层厚厚的TCP包头,那网络上跑的几乎全是包头了,有效的数据只占其中很小的部分,很多访问量大的服务器,带宽可以很轻松的被这么耗尽。那么,为了让有效负载升高,我们可以通过这个选项指示TCP层,在发送的时候尽量多攒一些数据,把他们填充到一个TCP包中再发送出去。这个和提升发送效率是相互矛盾的,空间和时间总是一堆冤家!!

  TCP_NODELAY:尽量不要等待,只要发送缓冲区中有数据,并且发送窗口是打开的,就尽量把数据发送到网络上去。

  很明显,两个选项是互斥的。实际场景中该怎么选择这两个选项呢?再次举例说明

  webserver,,下载服务器(ftp的发送文件服务器),需要带宽量比较大的服务器,用TCP_CORK。

  涉及到交互的服务器,比如ftp的接收命令的服务器,必须使用TCP_NODELAY。默认是TCP_CORK。设想一下,用户每次敲几个字节的命令,而下层在攒这些数据,想等到数据量多了再发送,这样用户会等到发疯。这个糟糕的场景有个专门的词汇来形容-----粘(nian拼音二声)包

你可能感兴趣的:(c,网络编程)