经典排序算法汇总(C#)

1.选择排序

class SelectionSorter    
{    
    private int min;    
    public void Sort(int[] arr)    
    {    
        for (int i = 0; i < arr.Length - 1; ++i)    
        {    
            min = i;    
            for (int j = i + 1; j < arr.Length; ++j)    
            {    
                if (arr[j] < arr[min])    
                    min = j;    
            }    
            int t = arr[min];    
            arr[min] = arr[i];    
            arr[i] = t;    
        }    
    }    
 } 

2.冒泡排序

class EbullitionSorter    
{    
    public void Sort(int[] arr)    
    {    
        int i, j, temp;    
        bool done = false;    
        j = 1;    
        while ((j < arr.Length) && (!done))//判断长度    
        {    
            done = true;    
            for (i = 0; i < arr.Length - j; i++)    
            {    
                if (arr[i] > arr[i + 1])    
                {    
                    done = false;    
                    temp = arr[i];    
                    arr[i] = arr[i + 1];//交换数据    
                    arr[i + 1] = temp;    
                }    
            }    
            j++;    
        }    
    }      
} 

3.快速排序

class QuickSorter    
{    
    private void swap(ref int l, ref int r)    
    {    
        int temp;    
        temp = l;    
        l = r;    
        r = temp;    
    }    
    public void Sort(int[] list, int low, int high)    
    {    
        int pivot;//存储分支点    
        int l, r;    
        int mid;    
        if (high <= low)    
            return;    
        else if (high == low + 1)    
        {    
            if (list[low] > list[high])    
                swap(ref list[low], ref list[high]);    
            return;    
        }    
        mid = (low + high) >> 1;    
        pivot = list[mid];    
        swap(ref list[low], ref list[mid]);    
        l = low + 1;    
        r = high;    
        do   
        {    
        while (l <= r && list[l] < pivot)    
            l++;    
        while (list[r] >= pivot)    
            r--;    
            if (l < r)    
                swap(ref list[l], ref list[r]);    
        } while (l < r);    
        list[low] = list[r];    
        list[r] = pivot;    
        if (low + 1 < r)    
            Sort(list, low, r - 1);    
        if (r + 1 < high)    
            Sort(list, r + 1, high);    
    }      
}    

4.插入排序

public class InsertionSorter    
{    
    public void Sort(int[] arr)    
    {    
        for (int i = 1; i < arr.Length; i++)    
        {    
            int t = arr[i];    
            int j = i;    
            while ((j > 0) && (arr[j - 1] > t))    
            {    
                arr[j] = arr[j - 1];//交换顺序    
                --j;    
            }    
            arr[j] = t;    
        }    
    }     
}  

5.希尔排序

public class ShellSorter    
{    
    public void Sort(int[] arr)    
    {    
        int inc;    
        for (inc = 1; inc <= arr.Length / 9; inc = 3 * inc + 1) ;    
        for (; inc > 0; inc /= 3)    
        {    
            for (int i = inc + 1; i <= arr.Length; i += inc)    
            {    
                int t = arr[i - 1];    
                int j = i;    
                while ((j > inc) && (arr[j - inc - 1] > t))    
                {    
                    arr[j - 1] = arr[j - inc - 1];//交换数据    
                    j -= inc;    
                }    
                arr[j - 1] = t;    
            }    
        }    
    }   
}   

6.归并排序

        /// 归并排序之归:归并排序入口
        ///         /// 无序的数组
        /// 
   
    有序数组
   
        /// 
   
    Lihua(www.zivsoft.com)
   
        int[] Sort(int[] data)
        {
            //取数组中间下标
            int middle = data.Length / 2;
            //初始化临时数组let,right,并定义result作为最终有序数组
            int[] left = new int[middle], right = new int[middle], result = new int[data.Length];
            if (data.Length % 2 != 0)//若数组元素奇数个,重新初始化右临时数组
            {
                right = new int[middle + 1];
            }
            if (data.Length <= 1)//只剩下1 or 0个元数,返回,不排序
            {
                return data;
            }
            int i = 0, j = 0;
            foreach (int x in data)//开始排序
            {
                if (i < middle)//填充左数组
                {
                    left[i] = x;
                    i++;
                }
                else//填充右数组
                {
                    right[j] = x;
                    j++;
                }
            }
            left = Sort(left);//递归左数组
            right = Sort(right);//递归右数组
            result = Merge(left, right);//开始排序
            //this.Write(result);//输出排序,测试用(lihua debug)
            return result;
        }
        /// 
        /// 归并排序之并:排序在这一步
        /// 
        /// 左数组
        /// 右数组
        /// 
   
    合并左右数组排序后返回
   
        int[] Merge(int[] a, int[] b)
        {
            //定义结果数组,用来存储最终结果
            int[] result = new int[a.Length + b.Length];
            int i = 0, j = 0, k = 0;
            while (i < a.Length && j < b.Length)
            {
                if (a[i] < b[j])//左数组中元素小于右数组中元素
                {
                    result[k++] = a[i++];//将小的那个放到结果数组
                }
                else//左数组中元素大于右数组中元素
                {
                    result[k++] = b[j++];//将小的那个放到结果数组
                }
            }
            while (i < a.Length)//这里其实是还有左元素,但没有右元素
            {
                result[k++] = a[i++];
            }
            while (j < b.Length)//右右元素,无左元素
            {
                result[k++] = b[j++];
            }
            return result;//返回结果数组
        }
注:此算法由周利华提供(http://www.cnblogs.com/architect/archive/2009/05/06/1450489.html 
)

7.基数排序

//基数排序
        public int[] RadixSort(int[] ArrayToSort, int digit)
        {   
            //low to high digit
            for (int k = 1; k <= digit; k++)
            {       
                //temp array to store the sort result inside digit
                int[] tmpArray = new int[ArrayToSort.Length]; 
                //temp array for countingsort 
                int[] tmpCountingSortArray = new int[10]{0,0,0,0,0,0,0,0,0,0};        
                //CountingSort        
                for (int i = 0; i < ArrayToSort.Length; i++)        
                {           
                    //split the specified digit from the element 
                    int tmpSplitDigit = ArrayToSort[i]/(int)Math.Pow(10,k-1) - (ArrayToSort[i]/(int)Math.Pow(10,k))*10; 
                    tmpCountingSortArray[tmpSplitDigit] += 1; 
                }         
                for (int m = 1; m < 10; m++)      
                {            
                    tmpCountingSortArray[m] += tmpCountingSortArray[m - 1];        
                }        
                //output the value to result      
                for (int n = ArrayToSort.Length - 1; n >= 0; n--)       
                {           
                    int tmpSplitDigit = ArrayToSort[n] / (int)Math.Pow(10,k - 1) - (ArrayToSort[n]/(int)Math.Pow(10,k)) * 10;           
                    tmpArray[tmpCountingSortArray[tmpSplitDigit]-1] = ArrayToSort[n];            
                    tmpCountingSortArray[tmpSplitDigit] -= 1;       
                }        
                //copy the digit-inside sort result to source array       
                for (int p = 0; p < ArrayToSort.Length; p++)       
                {           
                    ArrayToSort[p] = tmpArray[p];       
                }   
            }    
            return ArrayToSort;
        }

8.计数排序

        /// counting sort
        ///         /// input array
        /// the value arrange in input array
        /// 
   
        public int[] CountingSort(int[] arrayA, int arrange)
        {    
            //array to store the sorted result,  
            //size is the same with input array. 
            int[] arrayResult = new int[arrayA.Length];    
            //array to store the direct value in sorting process   
            //include index 0;    
            //size is arrange+1;    
            int[] arrayTemp = new int[arrange+1];    
            //clear up the temp array    
            for(int i = 0; i <= arrange; i++)    
            {        
                arrayTemp[i] = 0;  
            }    
            //now temp array stores the count of value equal  
            for(int j = 0; j < arrayA.Length; j++)   
            {       
                arrayTemp[arrayA[j]] += 1;   
            }    
            //now temp array stores the count of value lower and equal  
            for(int k = 1; k <= arrange; k++)   
            {       
                arrayTemp[k] += arrayTemp[k - 1];  
            }     
            //output the value to result    
            for (int m = arrayA.Length-1; m >= 0; m--)   
            {        
                arrayResult[arrayTemp[arrayA[m]] - 1] = arrayA[m];    
                arrayTemp[arrayA[m]] -= 1;  
            }    
            return arrayResult;
        }

9.小根堆排

        /// 小根堆排序
        /// 
        private void HeapSort(ref double[] dblArray)
        {
            for (int i = dblArray.Length - 1; i >= 0; i--)
            {
                if (2 * i + 1 < dblArray.Length)
                {
                    int MinChildrenIndex = 2 * i + 1;
                    //比较左子树和右子树,记录最小值的Index
                    if (2 * i + 2 < dblArray.Length)
                    {
                        if (dblArray[2 * i + 1] > dblArray[2 * i + 2])
                            MinChildrenIndex = 2 * i + 2;
                    }
                    if (dblArray[i] > dblArray[MinChildrenIndex])
                    {


                        ExchageValue(ref dblArray[i], ref dblArray[MinChildrenIndex]);
                        NodeSort(ref dblArray, MinChildrenIndex);
                    }
                }
            }
        }

        /// 
        /// 节点排序
        /// 
        /// 
        /// 

        private void NodeSort(ref double[] dblArray, int StartIndex)
        {
            while (2 * StartIndex + 1 < dblArray.Length)
            {
                int MinChildrenIndex = 2 * StartIndex + 1;
                if (2 * StartIndex + 2 < dblArray.Length)
                {
                    if (dblArray[2 * StartIndex + 1] > dblArray[2 * StartIndex + 2])
                    {
                        MinChildrenIndex = 2 * StartIndex + 2;
                    }
                }
                if (dblArray[StartIndex] > dblArray[MinChildrenIndex])
                {
                    ExchageValue(ref dblArray[StartIndex], ref dblArray[MinChildrenIndex]);
                    StartIndex = MinChildrenIndex;
                }
            }
        }

        /// 
        /// 交换值
        /// 
        /// 
        /// 
        private void ExchageValue(ref double A, ref double B)
        {
            double Temp = A;
            A = B;
            B = Temp;
        }

你可能感兴趣的:(排序,算法)