// pca_svm.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include "cv.h" #include "highgui.h" #include "cvaux.h" #include "ml.h" using namespace cv; using namespace std; #pragma comment(lib, "cv.lib") #pragma comment(lib, "cvaux.lib") #pragma comment(lib, "cxcore.lib") #pragma comment(lib, "highgui.lib") int _tmain(int argc, _TCHAR* argv[]) { vector<Mat> images; //This variable will be loaded with a set of images to perform PCA on. char filename[100]; int imageFaceNum = 100; int imageNonFaceNum = 25; int num = 0; Mat src; Mat values(imageFaceNum+imageNonFaceNum, 1, CV_32SC1); //Values are the corresponding values to each of my images. for(int i=1; i<=imageFaceNum; i++) { sprintf(filename,"E:/图片数据库/MIT人脸库/train_face/%d.bmp",i); values.at<int>(i-1,0) = 1; src=cvLoadImage(filename,0); images.push_back(src); num++; } for(int i=1; i<=imageNonFaceNum; i++) { sprintf(filename,"E:/图片数据库/MIT人脸库/train_nonface/%d.bmp",i); values.at<int>(num-1,0) = 0; src=cvLoadImage(filename,0); images.push_back(src); num++; } int nEigens = images.size() - 1; //Number of Eigen Vectors. //Load the images into a Matrix Mat desc_mat(images.size(), images[0].rows * images[0].cols, CV_8UC1); for (int i=0; i<images.size(); i++) { desc_mat.row(i) = images[i].reshape(1, 1) + 0; } Mat average; PCA pca(desc_mat, average, CV_PCA_DATA_AS_ROW, nEigens); Mat data(desc_mat.rows, nEigens, CV_32FC1); //This Mat will contain all the Eigenfaces that will be used later with SVM for detection //Project the images onto the PCA subspace for(int i=0; i<images.size(); i++) { Mat projectedMat(1, nEigens, CV_32FC1); pca.project(desc_mat.row(i), projectedMat); data.row(i) = projectedMat.row(0) + 0; } CvMat d1 = (CvMat)data; CvMat d2 = (CvMat)values; CvSVM svm = CvSVM(); CvSVMParams param; CvTermCriteria criteria; criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON ); param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria ); //☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆ svm.train( &d1, &d2, NULL, NULL, param ); svm.save("svmdata.xml"); ////////////////////////////////////////////////////////////////////////// PCA pca(); Mat cs; Mat cs1(1,400,CV_32FC1); for(int i=1; i<=100; i++) { sprintf(filename,"E:/图片数据库/MIT人脸库/train_face/%d.bmp",i); src=cvLoadImage(filename,0); cs = src.reshape(1, 1) + 0; Mat projectedMat(1, nEigens, CV_32FC1); pca.project(cs, projectedMat); CvMat d3 = (CvMat)projectedMat; int ret = svm.predict(&d3); cout<<ret<<endl; } return 0; }