Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
题意:如图,判断两个字符串是否是scrambled关系。
分类:动态规划,字符串
解法1:三维动态规划。简单的说,就是s1和s2是scramble的话,那么必然存在一个在s1上的长度l1,将s1分成s11和s12两段,同样有s21和s22。
那么要么s11和s21是scramble的并且s12和s22是scramble的(条件1);
要么s11和s22是scramble的并且s12和s21是scramble的(条件2)。
思路是建立一个boolean flag[i][j][len],表明s1从i开始,s2从j开始,len长度的字符串,两者是不是scrambled关系。所以我们求的是flag[0][0][len]
根据上面的说法,要判断flag[i][j][len]是否为true,我们有两个判断依据
首先,我们尝试将s1分成两部分,因为起始序号是i,结束序号是i+len-1
假设我们从i开始,k长度把s1分成s11,s12,那么0<=k<=len
所以我们要判断res[i][j][k]&&res[i+k][j+k][len-k]是否为true,如果是,则满足条件1,
另外,我们还可以根据条件2
判断res[i][j+len-k][k]&&res[i+k][j][len-k]是否为true
public class Solution { public boolean isScramble(String s1, String s2) { if(s1==null || s2==null || s1.length()!=s2.length()) return false; if(s1.length()==0) return true; boolean[][][] res = new boolean[s1.length()][s2.length()][s1.length()+1]; for(int i=0;i<s1.length();i++){ for(int j=0;j<s2.length();j++){ res[i][j][1] = s1.charAt(i)==s2.charAt(j); } } for(int len=2;len<=s1.length();len++){ for(int i=0;i<s1.length()-len+1;i++){ for(int j=0;j<s2.length()-len+1;j++) { for(int k=1;k<len;k++){ res[i][j][len] |= res[i][j][k]&&res[i+k][j+k][len-k] || res[i][j+len-k][k]&&res[i+k][j][len-k]; } } } } return res[0][0][s1.length()]; } }