/* * Copyright (c) 2015, 烟台大学计算机与控制工程学院 * All rights reserved. * 文件名称: btree.cpp,main.cpp,btree.h * 作者:巩凯强 * 完成日期:2015年11月5日 * 版本号:codeblocks * * 问题描述: <span style="color: rgb(85, 85, 85); font-family: 'microsoft yahei'; font-size: 14px; line-height: 35px;">实现二叉树的先序、中序、后序遍历的递归算法,并对用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”创建的二叉树进行测试</span>. * 输入描述: 无 * 程序输出: 见运行结果 */ #ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED #include <stdio.h> #include <malloc.h> #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; //数据元素 struct node *lchild; //指向左孩子 struct node *rchild; //指向右孩子 } BTNode; void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链 int BTNodeDepth(BTNode *b); //求二叉树b的深度 void DispBTNode(BTNode *b); //以括号表示法输出二叉树 void DestroyBTNode(BTNode *&b); //销毁二叉树 void PreOrder(BTNode *b) ; void InOrder(BTNode *b); void PostOrder(BTNode *b); #endif // BTREE_H_INCLUDED #include "btree.h" void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链 { BTNode *St[MaxSize],*p=NULL; int top=-1,k,j=0; char ch; b=NULL; //建立的二叉树初始时为空 ch=str[j]; while (ch!='\0') //str未扫描完时循环 { switch(ch) { case '(': top++; St[top]=p; k=1; break; //为左节点 case ')': top--; break; case ',': k=2; break; //为右节点 default: p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch; p->lchild=p->rchild=NULL; if (b==NULL) //p指向二叉树的根节点 b=p; else //已建立二叉树根节点 { switch(k) { case 1: St[top]->lchild=p; break; case 2: St[top]->rchild=p; break; } } } j++; ch=str[j]; } } void DispBTNode(BTNode *b) //以括号表示法输出二叉树 { if (b!=NULL) { printf("%c",b->data); if (b->lchild!=NULL || b->rchild!=NULL) { printf("("); DispBTNode(b->lchild); if (b->rchild!=NULL) printf(","); DispBTNode(b->rchild); printf(")"); } } } void PreOrder(BTNode *b) //先序遍历的递归算法 { if (b!=NULL) { printf("%c ",b->data); //访问根节点 PreOrder(b->lchild); //递归访问左子树 PreOrder(b->rchild); //递归访问右子树 } } void DestroyBTNode(BTNode *&b) //销毁二叉树 { if (b!=NULL) { DestroyBTNode(b->lchild); DestroyBTNode(b->rchild); free(b); } } void InOrder(BTNode *b) //中序遍历的递归算法 { if (b!=NULL) { InOrder(b->lchild); //递归访问左子树 printf("%c ",b->data); //访问根节点 InOrder(b->rchild); //递归访问右子树 } } void PostOrder(BTNode *b) //后序遍历的递归算法 { if (b!=NULL) { PostOrder(b->lchild); //递归访问左子树 PostOrder(b->rchild); //递归访问右子树 printf("%c ",b->data); //访问根节点 } } #include"btree.h" int main() { BTNode *b; CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))"); printf("二叉树b:"); DispBTNode(b); printf("\n"); printf("先序遍历序列:\n"); PreOrder(b); printf("\n"); printf("中序遍历序列:\n"); InOrder(b); printf("\n"); printf("后序遍历序列:\n"); PostOrder(b); printf("\n"); DestroyBTNode(b); return 0; }
运行结果:
知识点总结:
先序遍历:先访问根节点,再先序遍历左子树,最后遍历右子树
中序遍历:先中序遍历左子树,再访问根节点,最后中序遍历右子树
后序遍历:先后序便利左子树,再后序遍历右子树,最后访问根节点
学习心得:
这个题目通过Debug调试效果会比较明显