使用Linux平台上现有的信号量sem_t相关的一组API,可以方便地进行线程同步。现在用pthread_mutex_t和pthread_cond_t相关的一组API实现信号量机制。这组API包括:pthread_mutex_init,pthread_cond_init,pthread_mutex_lock,pthread_cond_signal,pthread_mutex_unlock,pthread_cond_wait,pthread_cond_timedwait,pthread_cond_destroy和pthread_mutex_destroy,可以在linux.com">http://www.9linux.com找到各API的说明。下边,是封装的信号量类,以及测试代码。使用VS2005编辑,在虚拟机 Fedora 13中编译,测试通过。
MySemaphore.h
view plain
#ifndef Semaphore_Header
#define Semaphore_Header
#include <iostream>
#include <pthread.h>
#include <errno.h>
#include <assert.h>
using namespace std;
//------------------------------------------------------------------------
class CSemaphoreImpl
{
protected:
CSemaphoreImpl(int n, int max);
~CSemaphoreImpl();
void SetImpl();
void WaitImpl();
bool WaitImpl(long lMilliseconds);
private:
volatile int m_n;
int m_max;
pthread_mutex_t m_mutex;
pthread_cond_t m_cond;
};
inline void CSemaphoreImpl::SetImpl()
{
if (pthread_mutex_lock(&m_mutex))
cout<<"cannot signal semaphore (lock)"<<endl;
if (m_n < m_max)
{
++m_n;
}
else
{
pthread_mutex_unlock(&m_mutex);
cout<<"cannot signal semaphore: count would exceed maximum"<<" m_n = "<<m_n<<"m_max = "<<m_max<<endl;
}
//重新开始等待m_cond的线程,可被调度
if (pthread_cond_signal(&m_cond))
{
pthread_mutex_unlock(&m_mutex);
cout<<"cannot signal semaphore"<<endl;
}
pthread_mutex_unlock(&m_mutex);
}
//------------------------------------------------------------------------
/*
信号量同步机制
信号量提供一个计数值,可以进行原子操作。V 将计数值加1,使得
等待该信号量的线程可以被调用(调用Set()),P 将计数值减1,使
当前线程被挂起,进行睡眠(调用Wait())。
当信号量的计数值被初始化为0时,调用P操作,将挂起当前线程。
当信号量被激活,即调用V操作后,被挂起的线程就有机会被重新调度了。
*/
class CMySemaphore: private CSemaphoreImpl
{
public:
/*
创建一个信号量,信号量计数值当前值为参数n,最大值为max。
如果只有n,则n必须大于0;如果同时有n和max,则n必须不小
于0,且不大于max
*/
CMySemaphore(int n);
CMySemaphore(int n, int max);
/*
销毁一个信号量
*/
~CMySemaphore();
/*
对信号量计数值做加1动作,信号量变为有信号状态,使得
另一个等待该信号量的线程可以被调度
*/
void Set();
/*
对信号量计数值做减1动作,信号量变为无信号状态。若
计数值变得大于0时,信号量才会变为有信号状态。
*/
void Wait();
/*
在给定的时间间隔里等待信号量变为有信号状态,若成功,
则将计数值减1,否则将发生超时。
*/
void Wait(long lMilliseconds);
/*
在给定的时间间隔里等待信号量变为有信号状态,若成功,
则将计数值减1,返回true;否则返回false。
*/
bool TryWait(long lMilliseconds);
private:
CMySemaphore();
CMySemaphore(const CMySemaphore&);
CMySemaphore& operator = (const CMySemaphore&);
};
inline void CMySemaphore::Set()
{
SetImpl();
}
inline void CMySemaphore::Wait()
{
WaitImpl();
}
inline void CMySemaphore::Wait(long lMilliseconds)
{
if (!WaitImpl(lMilliseconds))
cout<<"time out"<<endl;
}
inline bool CMySemaphore::TryWait(long lMilliseconds)
{
return WaitImpl(lMilliseconds);
}
#endif
MySemaphore.cpp
view plain
#include "MySemaphore.h"
#include <sys/time.h>
CSemaphoreImpl::CSemaphoreImpl(int n, int max): m_n(n), m_max(max)
{
assert (n >= 0 && max > 0 && n <= max);
if (pthread_mutex_init(&m_mutex, NULL))
cout<<"cannot create semaphore (mutex)"<<endl;
if (pthread_cond_init(&m_cond, NULL))
cout<<"cannot create semaphore (condition)"<<endl;
}
CSemaphoreImpl::~CSemaphoreImpl()
{
pthread_cond_destroy(&m_cond);
pthread_mutex_destroy(&m_mutex);
}
void CSemaphoreImpl::WaitImpl()
{
if (pthread_mutex_lock(&m_mutex))
cout<<"wait for semaphore failed (lock)"<<endl;
while (m_n < 1)
{
//对互斥体进行原子的解锁工作,然后等待状态信号
if (pthread_cond_wait(&m_cond, &m_mutex))
{
pthread_mutex_unlock(&m_mutex);
cout<<"wait for semaphore failed"<<endl;
}
}
--m_n;
pthread_mutex_unlock(&m_mutex);
}
bool CSemaphoreImpl::WaitImpl(long lMilliseconds)
{
int rc = 0;
struct timespec abstime;
struct timeval tv;
gettimeofday(&tv, NULL);
abstime.tv_sec = tv.tv_sec + lMilliseconds / 1000;
abstime.tv_nsec = tv.tv_usec*1000 + (lMilliseconds % 1000)*1000000;
if (abstime.tv_nsec >= 1000000000)
{
abstime.tv_nsec -= 1000000000;
abstime.tv_sec++;
}
if (pthread_mutex_lock(&m_mutex) != 0)
cout<<"wait for semaphore failed (lock)"<<endl;
while (m_n < 1)
{
//自动释放互斥体并且等待m_cond状态,并且限制了最大的等待时间
if ((rc = pthread_cond_timedwait(&m_cond, &m_mutex, &abstime)))
{
if (rc == ETIMEDOUT) break;
pthread_mutex_unlock(&m_mutex);
cout<<"cannot wait for semaphore"<<endl;
}
}
if (rc == 0) --m_n;
pthread_mutex_unlock(&m_mutex);
return rc == 0;
}
CMySemaphore::CMySemaphore(int n): CSemaphoreImpl(n, n)
{
}
CMySemaphore::CMySemaphore(int n, int max): CSemaphoreImpl(n, max)
{
}
CMySemaphore::~CMySemaphore()
{
}
下边是测试代码
view plain
// pthread_semaphore.cpp : 定义控制台应用程序的入口点。
//
#include "MySemaphore.h"
//创建一个信号量,其计数值当前值为0,最大值为3
CMySemaphore g_MySem(0, 3);
//线程函数
void * StartThread(void *pParam)
{
//休眠1秒,确保主线程函数main中
//创建工作线程下一句g_MySem.Set();先执行
sleep(1);
g_MySem.Wait(); //信号量计数值减1
cout<<"Do print StartThread"<<endl;
return (void *)0;
}
int main(int argc, char* argv[])
{
pthread_t thread;
pthread_attr_t attr;
assert ( !g_MySem.TryWait(10) );
g_MySem.Set(); //信号量计数值加1
g_MySem.Wait(); //信号量计数值减1
try
{
g_MySem.Wait(100);
cout<<"must timeout"<<endl; //此处发生超时
}
catch (...)
{
cout<<"wrong exception"<<endl;
}
g_MySem.Set();
g_MySem.Set();
assert ( g_MySem.TryWait(0) );
g_MySem.Wait();
assert ( !g_MySem.TryWait(10) );
//创建工作线程
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
if (pthread_create(&thread,&attr, StartThread,NULL) == -1)
{
cout<<"StartThread: create failed"<<endl;
}
g_MySem.Set();
//等待线程结束
void *result;
pthread_join(thread,&result);
assert ( !g_MySem.TryWait(10) ); //若将断言中的 ! 去掉,则会发生断言错误
//关闭线程句柄,释放资源
pthread_attr_destroy(&attr);
int iWait;
cin>>iWait;
return 0;
}
编译,运行。可以看到,与Win32平台上的测试结果相同
由此可见,信号量机制很关键的一点就是计数值 m_n