Linux内核源代码情景分析-中断上半部

    一、中断初始化

    1、中断向量表IDT的初始化

void __init init_IRQ(void)
{
	int i;

#ifndef CONFIG_X86_VISWS_APIC
	init_ISA_irqs();
#else
	init_VISWS_APIC_irqs();
#endif
	/*
	 * Cover the whole vector space, no vector can escape
	 * us. (some of these will be overridden and become
	 * 'special' SMP interrupts)
	 */
	for (i = 0; i < NR_IRQS; i++) {//NR_IRQS为224
		int vector = FIRST_EXTERNAL_VECTOR + i;//FIRST_EXTERNAL_VECTOR为0x20
		if (vector != SYSCALL_VECTOR)//SYSCALL_VECTOR为0x80 
			set_intr_gate(vector, interrupt[i]);
	}

        ......
}
    对从0x20到224的中断向量,设置中断处理程序,set_intr_gate如下:

void set_intr_gate(unsigned int n, void *addr)
{
	_set_gate(idt_table+n,14,0,addr);
}
    在IDT中设置了门描述符,如下图:


    Selector为_KERNEL_CS。P为1;DPL为00;DT为0;TYPE为14,中断门。Offset就是interrupt[i]的偏移。


    那么interrupt[i]是什么函数呢?经过若干宏定义的展开,如下:

void (*interrupt[NR_IRQS])(void) = {
	IRQ0x00_interrupt,IRQx01_interrupt,.....IRQx0F_interrupt};
    IRQ0x00_interrupt,经过若干宏定义的展开,如下:

asmlinkage void IRQ0X00_interrupt();
__asm__( \
"\n" \
"IRQ0X00_interrupt: \n\t" \
"pushl $0x00 - 256 \n\t" \
"jmp common_interrupt");


    2、中断请求队列的初始化

    在init_IRQ调用init_ISA_irqs,如下:

void __init init_ISA_irqs (void)
{
	int i;

	init_8259A(0);

	for (i = 0; i < NR_IRQS; i++) {//NR_IRQS为224
		irq_desc[i].status = IRQ_DISABLED;
		irq_desc[i].action = 0;
		irq_desc[i].depth = 1;

		if (i < 16) {
			/*
			 * 16 old-style INTA-cycle interrupts:
			 */
			irq_desc[i].handler = &i8259A_irq_type;//将开头16个中断请求队列的handler指针设置成指向数据结构
		} else {
			/*
			 * 'high' PCI IRQs filled in on demand
			 */
			irq_desc[i].handler = &no_irq_type;
		}
	}
}
    irq_dec[i]的成员变量action就是这个中断请求队列的头。i从0~15一共16个中断请求队列。其成员变量handler对该共用"中断通道"的控制,enable和disable用来开启和关断其所属通道,ack用于对中断控制器的响应,而end用于每次中断服务返回的前夕。    


    这些数据结构定义如下:

struct hw_interrupt_type {
	const char * typename;
	unsigned int (*startup)(unsigned int irq);
	void (*shutdown)(unsigned int irq);
	void (*enable)(unsigned int irq);
	void (*disable)(unsigned int irq);
	void (*ack)(unsigned int irq);
	void (*end)(unsigned int irq);
	void (*set_affinity)(unsigned int irq, unsigned long mask);
};

typedef struct hw_interrupt_type  hw_irq_controller;

/*
 * This is the "IRQ descriptor", which contains various information
 * about the irq, including what kind of hardware handling it has,
 * whether it is disabled etc etc.
 *
 * Pad this out to 32 bytes for cache and indexing reasons.
 */
typedef struct {
	unsigned int status;		/* IRQ status */
	hw_irq_controller *handler;
	struct irqaction *action;	/* IRQ action list */
	unsigned int depth;		/* nested irq disables */
	spinlock_t lock;
} ____cacheline_aligned irq_desc_t;

extern irq_desc_t irq_desc [NR_IRQS];
static struct hw_interrupt_type i8259A_irq_type = {
	"XT-PIC",
	startup_8259A_irq,
	shutdown_8259A_irq,
	enable_8259A_irq,
	disable_8259A_irq,
	mask_and_ack_8259A,
	end_8259A_irq,
	NULL
};
struct irqaction {
	void (*handler)(int, void *, struct pt_regs *);
	unsigned long flags;
	unsigned long mask;
	const char *name;
	void *dev_id;
	struct irqaction *next;
};

    二、将irqaction数据结构的irq0,链入相应的中断请求队列

void __init time_init(void)
{
	......
	setup_irq(0, &irq0);
        ......
}
    其中irq0,如下:

static struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
    结合上面的struct irqaction去理解。

    

    setup_irq,如下:

int setup_irq(unsigned int irq, struct irqaction * new)//irq为中断请求号
{
	int shared = 0;
	unsigned long flags;
	struct irqaction *old, **p;
	irq_desc_t *desc = irq_desc + irq;//找到对应的通道

	/*
	 * Some drivers like serial.c use request_irq() heavily,
	 * so we have to be careful not to interfere with a
	 * running system.
	 */
	if (new->flags & SA_SAMPLE_RANDOM) {
		/*
		 * This function might sleep, we want to call it first,
		 * outside of the atomic block.
		 * Yes, this might clear the entropy pool if the wrong
		 * driver is attempted to be loaded, without actually
		 * installing a new handler, but is this really a problem,
		 * only the sysadmin is able to do this.
		 */
		rand_initialize_irq(irq);
	}

	/*
	 * The following block of code has to be executed atomically
	 */
	spin_lock_irqsave(&desc->lock,flags);
	p = &desc->action;//找到通道对应的中断处理队列
	if ((old = *p) != NULL) {//如果中断请求队列中已经有元素了
		/* Can't share interrupts unless both agree to */
		if (!(old->flags & new->flags & SA_SHIRQ)) {//那么需要原元素和新元素的flags都为SA_SHIRQ,表示与其他中断源公用该中断请求通道
			spin_unlock_irqrestore(&desc->lock,flags);
			return -EBUSY;
		}

		/* add new interrupt at end of irq queue */
		do {
			p = &old->next;
			old = *p;
		} while (old);//链入对应的位置
		shared = 1;
	}

	*p = new;//如果中断请求队列没有元素,则直接把irq0链入中断请求队列

	if (!shared) {//第一个元素链入后
		desc->depth = 0;
		desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);//status为0
		desc->handler->startup(irq);
	}
	spin_unlock_irqrestore(&desc->lock,flags);

	register_irq_proc(irq);
	return 0;
}

    三、中断响应

    我们拿时钟中断,举例说明。假设已经发生了时钟中断。

    1、执行中断处理函数之前

    如果中断发生在用户态,则会形成如下图:



    (1)、CPU从中断控制器取得中断向量,然后根据具体的中断向量(本例中为0x20),从中断向量表IDT中找到相应的表项,而该表项应该是一个中断门。

    首先把用户态堆栈的SS,用户堆栈的ESP,EFLAGS,用户空间的CS,EIP存入到系统堆栈中(从TSS中获取)。


    (2)、CPU根据中断门的设置到达了该通道的总服务程序的入口。

    asmlinkage void IRQ0X00_interrupt();
__asm__( \
"\n" \
"IRQ0X00_interrupt: \n\t" \
"pushl $0x00 - 256 \n\t" \
"jmp common_interrupt");
    把中断号-256压入堆栈。


#define BUILD_COMMON_IRQ() \
asmlinkage void call_do_IRQ(void); \
__asm__( \
	"\n" __ALIGN_STR"\n" \
	"common_interrupt:\n\t" \
	SAVE_ALL \
	"pushl $ret_from_intr\n\t" \
	SYMBOL_NAME_STR(call_do_IRQ)":\n\t" \
	"jmp "SYMBOL_NAME_STR(do_IRQ));


#define SAVE_ALL \
	"cld\n\t" \
	"pushl %es\n\t" \
	"pushl %ds\n\t" \
	"pushl %eax\n\t" \
	"pushl %ebp\n\t" \
	"pushl %edi\n\t" \
	"pushl %esi\n\t" \
	"pushl %edx\n\t" \
	"pushl %ecx\n\t" \
	"pushl %ebx\n\t" \
	"movl $" STR(__KERNEL_DS) ",%edx\n\t" \
	"movl %edx,%ds\n\t" \
	"movl %edx,%es\n\t"
    执行完成SAVE_ALL后,就形成了如上图一样的堆栈。此时cs已经是_KERNEL_CS了,ds和es为_KERNEL_DS。

    然后把ret_from_intr也压入堆栈,并执行do_IRQ。


    2、执行中断处理函数

asmlinkage unsigned int do_IRQ(struct pt_regs regs)//就是上面堆栈中的内容
{	
	/* 
	 * We ack quickly, we don't want the irq controller
	 * thinking we're snobs just because some other CPU has
	 * disabled global interrupts (we have already done the
	 * INT_ACK cycles, it's too late to try to pretend to the
	 * controller that we aren't taking the interrupt).
	 *
	 * 0 return value means that this irq is already being
	 * handled by some other CPU. (or is disabled)
	 */
	int irq = regs.orig_eax & 0xff; //取得了中断号,为0
	int cpu = smp_processor_id();
	irq_desc_t *desc = irq_desc + irq;//找到对应的通道
	struct irqaction * action;
	unsigned int status;

	kstat.irqs[cpu][irq]++;
	spin_lock(&desc->lock);
	desc->handler->ack(irq);//我已经处理了
	/*
	   REPLAY is when Linux resends an IRQ that was dropped earlier
	   WAITING is used by probe to mark irqs that are being tested
	   */
	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
	status |= IRQ_PENDING;//status为IRQ_PENDING

	/*
	 * If the IRQ is disabled for whatever reason, we cannot
	 * use the action we have.
	 */
	action = NULL;
	if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {//status为IRQ_PENDING,执行下面代码
		action = desc->action;//找到通道对应的中断处理队列
		status &= ~IRQ_PENDING; //status为0,把IRQ_PENDING位清零了
		status |= IRQ_INPROGRESS; // status为IRQ_INPROCESS
	}
	desc->status = status;//desc->status为IRQ_INPROCESS

	/*
	 * If there is no IRQ handler or it was disabled, exit early.
	   Since we set PENDING, if another processor is handling
	   a different instance of this same irq, the other processor
	   will take care of it.
	 */
	if (!action)//如果action为NULL,直接退出
		goto out;

	/*
	 * Edge triggered interrupts need to remember
	 * pending events.
	 * This applies to any hw interrupts that allow a second
	 * instance of the same irq to arrive while we are in do_IRQ
	 * or in the handler. But the code here only handles the _second_
	 * instance of the irq, not the third or fourth. So it is mostly
	 * useful for irq hardware that does not mask cleanly in an
	 * SMP environment.
	 */
	for (;;) {
		spin_unlock(&desc->lock);
		handle_IRQ_event(irq, &regs, action);//action是中断请求队列的头指针,irq为0,
		spin_lock(&desc->lock);
		
		if (!(desc->status & IRQ_PENDING))
			break;
		desc->status &= ~IRQ_PENDING;
	}
	desc->status &= ~IRQ_INPROGRESS;//处理完,把IRQ_INPROCESS位置0
out:
	/*
	 * The ->end() handler has to deal with interrupts which got
	 * disabled while the handler was running.
	 */
	desc->handler->end(irq);//开中断
	spin_unlock(&desc->lock);

	if (softirq_active(cpu) & softirq_mask(cpu))//处理中断下半部
		do_softirq();
	return 1;
}

struct pt_regs {
	long ebx;
	long ecx;
	long edx;
	long esi;
	long edi;
	long ebp;
	long eax;
	int  xds;
	int  xes;
	long orig_eax;
	long eip;
	int  xcs;
	long eflags;
	long esp;
	int  xss;
};


    handle_IRQ_event,代码如下:

int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)
{
	int status;
	int cpu = smp_processor_id();

	irq_enter(cpu, irq);

	status = 1;	/* Force the "do bottom halves" bit */

	if (!(action->flags & SA_INTERRUPT))//如果这个标志位置0,那么要在开中断的情况下执行
		__sti();//开中断

	do {
		status |= action->flags;
		action->handler(irq, action->dev_id, regs);//依次执行中断请求队列上的中断处理函数
		action = action->next;
	} while (action);
	if (status & SA_SAMPLE_RANDOM)
		add_interrupt_randomness(irq);
	__cli();//关中断	

	irq_exit(cpu, irq);

	return status;
}
    在本例中,中断处理函数为timer_interrupt(action->handler)。我们看到大部分中断处理函数都是在关中断下执行的。但是action->flags的SA_INTERRUPT置0,是在开中断的情况下执行的。


    如果执行中断处理函数时,处于开中断的情况,而且此时恰好是同一通道的中断,也就是irq中断号(假设都为0)一样。由于上一次中断还没有退出,此时desc->status为IRQ_INPROGRESS。我们看这段代码:

    	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
	status |= IRQ_PENDING;//此时status为IRQ_PENDING| IRQ_INPROGRESS

	/*
	 * If the IRQ is disabled for whatever reason, we cannot
	 * use the action we have.
	 */
	action = NULL;
	if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {//不执行下面程序
		action = desc->action;
		status &= ~IRQ_PENDING; 
		status |= IRQ_INPROGRESS; 
	}
	desc->status = status;//desc->status为IRQ_PENDING| IRQ_INPROGRESS

	if (!action)//action为NULL,退出
		goto out;


    假设新中断退出后,原中断继续执行:
        for (;;) {
		spin_unlock(&desc->lock);
		handle_IRQ_event(irq, &regs, action);
		spin_lock(&desc->lock);
		
		if (!(desc->status & IRQ_PENDING))//由于新的中断执行时desc->status为IRQ_PENDING| IRQ_INPROGRESS,所以继续执行for循环
			break;
		desc->status &= ~IRQ_PENDING;//desc->status为IRQ_INPROGRESS
	}

    这样就把发生在同一通道上的中断嵌套化解成为一个循环了。


    我们继续分析中断处理函数,timer_interrupt,代码如下:

static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	int count;

	......
 
	do_timer_interrupt(irq, NULL, regs);

	write_unlock(&xtime_lock);

}

static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
        ......
	do_timer(regs);
        ......
}


void do_timer(struct pt_regs *regs)
{
	(*(unsigned long *)&jiffies)++;
#ifndef CONFIG_SMP
	/* SMP process accounting uses the local APIC timer */

	update_process_times(user_mode(regs));//与进程调度有关
#endif
	mark_bh(TIMER_BH);//中断下半部相关
	if (TQ_ACTIVE(tq_timer))
		mark_bh(TQUEUE_BH);
}

    执行完中断处理函数之后,返回do_IRQ,会检查是否有中断下半部需要执行,如果需要执行,则调用do_softirq,下半部是在开中断的情况下开始执行的。


    3、执行中断处理函数之后

    do_IRQ执行完毕后,会调用ret,返回到ret_from_intr执行,代码如下:

ENTRY(ret_from_intr)
	GET_CURRENT(%ebx)  //将指向当前进程的task_struct结构的指针置入寄存器EBX
	movl EFLAGS(%esp),%eax		# mix EFLAGS and CS
	movb CS(%esp),%al
	testl $(VM_MASK | 3),%eax	//看发生中断时是否处于用户态
	jne ret_with_reschedule   //如果处于用户态,那么执行ret_with_reschedule
	jmp restore_all
ret_with_reschedule:
	cmpl $0,need_resched(%ebx)//查看该task_struct结构中位移为need_resched处的内容
	jne reschedule
	cmpl $0,sigpending(%ebx)//查看该task_struct结构中位移为sigpending处的内容
	jne signal_return
restore_all:
	RESTORE_ALL
signal_return:
	sti				# we can get here from an interrupt handler
	testl $(VM_MASK),EFLAGS(%esp)
	movl %esp,%eax
	jne v86_signal_return
	xorl %edx,%edx
	call SYMBOL_NAME(do_signal)//处理信号
	jmp restore_all
restore_all:
	RESTORE_ALL
#define RESTORE_ALL	\ //返回中断前
	popl %ebx;	\
	popl %ecx;	\
	popl %edx;	\
	popl %esi;	\
	popl %edi;	\
	popl %ebp;	\
	popl %eax;	\
1:	popl %ds;	\
2:	popl %es;	\
	addl $4,%esp;	\ //跳过orig_eax
3:	iret;	
state		=  0
flags		=  4
sigpending	=  8
addr_limit	= 12
exec_domain	= 16
need_resched	= 20
tsk_ptrace	= 24
processor	= 52

你可能感兴趣的:(Linux内核源代码情景分析-中断上半部)