Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
和same tree题目差不多一样的解法。
1 recursively 递归法:
//2014-2-15 update bool isSymmetric(TreeNode *root) { if (!root) return true; return isSymmetric(root->left, root->right); } bool isSymmetric(TreeNode *lt, TreeNode *rt) { if (!lt && !rt) return true; if (lt && !rt || !lt && rt || lt->val != rt->val) return false; return isSymmetric(lt->left, rt->right) &&isSymmetric(lt->right, rt->left); }2 iteratively 非递归:
使用先序遍历,原来树的先序遍历的非递归写法也不简单。
//2014-2-15 update bool isSymmetric(TreeNode *root) { if (!root || !root->left && !root->right) return true; TreeNode *t1 = root->left, *t2 = root->right; if (t1&&!t2 || !t1&&t2 || t1->val!=t2->val) return false; stack<TreeNode *> s1, s2; s1.push(t1), s2.push(t2); bool flag = false; while (!s1.empty() && !s2.empty()) { if (!flag && (t1->left || t2->right)) { s1.push(t1), s2.push(t2); t1 = t1->left, t2 = t2->right; if (t1&&!t2 || !t1&&t2 || t1->val!=t2->val) return false; s1.push(t1), s2.push(t2); } else if (t1->right || t2->left) { t1 = t1->right, t2 = t2->left; if (t1&&!t2 || !t1&&t2 || t1->val!=t2->val) return false; flag = false; } else { t1 = s1.top(), t2 = s2.top(); s1.pop(), s2.pop(); flag = true; } } return s1.empty() && s2.empty(); }