作者:刘昊昱
博客:http://blog.csdn.net/liuhaoyutz
Android版本:2.3.7_r1
Linux内核版本:android-goldfish-2.6.29
一、硬件抽象层核心数据结构
Android硬件抽象层有三个核心数据结构,分别是hw_module_t , hw_module_methods_t, hw_device_t。定义在hardware/libhardware/include/hardware/hardware.h文件中:
40/** 41 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM 42 * and the fields of this data structure must begin with hw_module_t 43 * followed by module specific information. 44 */ 45typedef struct hw_module_t { 46 /** tag must be initialized to HARDWARE_MODULE_TAG */ 47 uint32_t tag; 48 49 /** major version number for the module */ 50 uint16_t version_major; 51 52 /** minor version number of the module */ 53 uint16_t version_minor; 54 55 /** Identifier of module */ 56 const char *id; 57 58 /** Name of this module */ 59 const char *name; 60 61 /** Author/owner/implementor of the module */ 62 const char *author; 63 64 /** Modules methods */ 65 struct hw_module_methods_t* methods; 66 67 /** module's dso */ 68 void* dso; 69 70 /** padding to 128 bytes, reserved for future use */ 71 uint32_t reserved[32-7]; 72 73} hw_module_t; 74 75typedef struct hw_module_methods_t { 76 /** Open a specific device */ 77 int (*open)(const struct hw_module_t* module, const char* id, 78 struct hw_device_t** device); 79 80} hw_module_methods_t; 81 82/** 83 * Every device data structure must begin with hw_device_t 84 * followed by module specific public methods and attributes. 85 */ 86typedef struct hw_device_t { 87 /** tag must be initialized to HARDWARE_DEVICE_TAG */ 88 uint32_t tag; 89 90 /** version number for hw_device_t */ 91 uint32_t version; 92 93 /** reference to the module this device belongs to */ 94 struct hw_module_t* module; 95 96 /** padding reserved for future use */ 97 uint32_t reserved[12]; 98 99 /** Close this device */ 100 int (*close)(struct hw_device_t* device); 101 102} hw_device_t;
40-44行,注意这段说明文字,硬件抽象层HAL由一个一个的模块组成,Android规定,每一个模块都是一个命名为HAL_MODULE_INFO_SYM的自定义结构体,并且该结构体的第一个成员必须为hw_module_t类型的变量,其它成员变量根据需要由开发者设置。
82-85行,注意这段说明文字,每个设备对应一个自定义结构体,该结构体的第一个成员必须为hw_device_t,其它成员根据需要由开发者设置。
例如,sensor模块对应的结构体定义在hardware/libhardware/include/hardware/sensors.h文件中:
344/** 345 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM 346 * and the fields of this data structure must begin with hw_module_t 347 * followed by module specific information. 348 */ 349struct sensors_module_t { 350 struct hw_module_t common; 351 352 /** 353 * Enumerate all available sensors. The list is returned in "list". 354 * @return number of sensors in the list 355 */ 356 int (*get_sensors_list)(struct sensors_module_t* module, 357 struct sensor_t const** list); 358}; sensor设备对应的结构体如下: 392/** 393 * Every device data structure must begin with hw_device_t 394 * followed by module specific public methods and attributes. 395 */ 396struct sensors_poll_device_t { 397 struct hw_device_t common; 398 399 /** Activate/deactivate one sensor. 400 * 401 * @param handle is the handle of the sensor to change. 402 * @param enabled set to 1 to enable, or 0 to disable the sensor. 403 * 404 * @return 0 on success, negative errno code otherwise 405 */ 406 int (*activate)(struct sensors_poll_device_t *dev, 407 int handle, int enabled); 408 409 /** 410 * Set the delay between sensor events in nanoseconds for a given sensor. 411 * It is an error to set a delay inferior to the value defined by 412 * sensor_t::minDelay. If sensor_t::minDelay is zero, setDelay() is 413 * ignored and returns 0. 414 * 415 * @return 0 if successful, < 0 on error 416 */ 417 int (*setDelay)(struct sensors_poll_device_t *dev, 418 int handle, int64_t ns); 419 420 /** 421 * Returns an array of sensor data. 422 * This function must block until events are available. 423 * 424 * @return the number of events read on success, or -errno in case of an error. 425 * This function should never return 0 (no event). 426 * 427 */ 428 int (*poll)(struct sensors_poll_device_t *dev, 429 sensors_event_t* data, int count); 430};
对于三星公司的crespo(Nexus S的开发代号),其sensor模块的真正实现代码定义在device/samsung/crespo/libsensors/sensors.cpp文件中:
108static struct hw_module_methods_t sensors_module_methods = { 109 open: open_sensors 110}; 111 112struct sensors_module_t HAL_MODULE_INFO_SYM = { 113 common: { 114 tag: HARDWARE_MODULE_TAG, 115 version_major: 1, 116 version_minor: 0, 117 id: SENSORS_HARDWARE_MODULE_ID, 118 name: "Samsung Sensor module", 119 author: "Samsung Electronic Company", 120 methods: &sensors_module_methods, 121 }, 122 get_sensors_list: sensors__get_sensors_list, 123};
而在open_sensors函数中,对相应设备对应的sensors_poll_device_t结构进行了赋值:
305/** Open a new instance of a sensor device using name */ 306static int open_sensors(const struct hw_module_t* module, const char* id, 307 struct hw_device_t** device) 308{ 309 int status = -EINVAL; 310 sensors_poll_context_t *dev = new sensors_poll_context_t(); 311 312 memset(&dev->device, 0, sizeof(sensors_poll_device_t)); 313 314 dev->device.common.tag = HARDWARE_DEVICE_TAG; 315 dev->device.common.version = 0; 316 dev->device.common.module = const_cast<hw_module_t*>(module); 317 dev->device.common.close = poll__close; 318 dev->device.activate = poll__activate; 319 dev->device.setDelay = poll__setDelay; 320 dev->device.poll = poll__poll; 321 322 *device = &dev->device.common; 323 status = 0; 324 325 return status; 326}
poll__close、poll__activate、poll__setDelay、poll__poll等函数也是在该文件中实现。
二、Android如何使用硬件抽象层
硬件抽象层的作用是对上层Application Framework屏蔽Linux底层驱动程序,那么Application Framework与硬件抽象层通信的接口是谁呢?答案是hw_get_module函数,该函数定义在hardware/libhardware/hardware.c文件中:
120int hw_get_module(const char *id, const struct hw_module_t **module) 121{ 122 int status; 123 int i; 124 const struct hw_module_t *hmi = NULL; 125 char prop[PATH_MAX]; 126 char path[PATH_MAX]; 127 128 /* 129 * Here we rely on the fact that calling dlopen multiple times on 130 * the same .so will simply increment a refcount (and not load 131 * a new copy of the library). 132 * We also assume that dlopen() is thread-safe. 133 */ 134 135 /* Loop through the configuration variants looking for a module */ 136 for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) { 137 if (i < HAL_VARIANT_KEYS_COUNT) { 138 if (property_get(variant_keys[i], prop, NULL) == 0) { 139 continue; 140 } 141 snprintf(path, sizeof(path), "%s/%s.%s.so", 142 HAL_LIBRARY_PATH1, id, prop); 143 if (access(path, R_OK) == 0) break; 144 145 snprintf(path, sizeof(path), "%s/%s.%s.so", 146 HAL_LIBRARY_PATH2, id, prop); 147 if (access(path, R_OK) == 0) break; 148 } else { 149 snprintf(path, sizeof(path), "%s/%s.default.so", 150 HAL_LIBRARY_PATH1, id); 151 if (access(path, R_OK) == 0) break; 152 } 153 } 154 155 status = -ENOENT; 156 if (i < HAL_VARIANT_KEYS_COUNT+1) { 157 /* load the module, if this fails, we're doomed, and we should not try 158 * to load a different variant. */ 159 status = load(id, path, module); 160 } 161 162 return status; 163}
hw_get_module函数的作用是由第一个参数id指定的模块ID,找到模块对应的hw_module_t结构体,保存在第二个参数module中。
136-153行,这个for循环是为了获取模块名及路径,保存在path中。循环次数为HAL_VARIANT_KEYS_COUNT次,HAL_VARIANT_KEYS_COUNT是下面要用到的variant_keys数组的数组元素个数。
为了说明这个for循环是如何获得模块名及其路径,我们要先来看一下variant_keys数组的定义,这个数组也是定义在hardware/libhardware/hardware.c文件中:
34/** 35 * There are a set of variant filename for modules. The form of the filename 36 * is "<MODULE_ID>.variant.so" so for the led module the Dream variants 37 * of base "ro.product.board", "ro.board.platform" and "ro.arch" would be: 38 * 39 * led.trout.so 40 * led.msm7k.so 41 * led.ARMV6.so 42 * led.default.so 43 */ 44 45static const char *variant_keys[] = { 46 "ro.hardware", /* This goes first so that it can pick up a different 47 file on the emulator. */ 48 "ro.product.board", 49 "ro.board.platform", 50 "ro.arch" 51}; 52 53static const int HAL_VARIANT_KEYS_COUNT = 54 (sizeof(variant_keys)/sizeof(variant_keys[0]));
34-43行,这段注释说明了模块对应的动态库的命名规范。模块对应的动态库文件名格式为<MODULE_ID>.variant.so,MODULE_ID是模块对应的ID,不同模块对应一个唯一固定的ID,那么variant是什么呢?又怎么获得variant呢?这就跟下面的variant_keys数组有关了。
45-51行,定义了variant_keys数组,这个数组有4个成员,即指向“ro.hardware”、“ ro.product.board”、“ ro.board.platform”、“ ro.arch”四个字符串的指针。我们可以将“ro.hardware”、“ ro.product.board”、“ ro.board.platform”、“ ro.arch”理解为属性,系统会通过适当的方法,根据平台、架构等给这些属性赋值。
例如,“ro.hardware”属性的属性值是在系统启动时由init进程负责设置的。它首先会读取/proc/cmdline文件,检查里面有没有一个名为androidboot.hardware的属性,如果有,就把它的值赋值给“ro.hardware”,否则,就将/proc/cpuinfo文件的内容读取出来,并解析出Haredware字段的内容赋值给“ro.hardware”。例如在Android模拟器中,从/proc/cpuinfo文件中读取出来的Hardware字段内容为goldfish,于是,init进程就会将 “ro.hardware” 属性设置为goldfish。
“ ro.product.board”、“ ro.board.platform”、“ ro.arch”属性是从/system/build.prop文件读取出来的。/system/build.prop文件是由编译系统中的编译脚本build/core/Makefile和shell脚本build/tools/buildinfo.sh生成的,这里不再详细分析。
53-54行,定义了HAL_VARIANT_KEYS_COUNT变量,它是variant_keys数组的大小。
从上面我们已经知道了variant_keys数组的内容,也知道了模块对应的动态库的命名规范。现在我们的问题是模块动态库命名规范格式<MODULE_ID>.variant.so中的variant是怎样获得的?又跟variant_keys数组有什么关系?为了回答这个问题,我们再回到hw_get_module函数的定义。
hw_get_module函数第138行,调用property_get(variant_keys[i], prop, NULL)函数,其作用是取得variant_keys[i]对应的属性值,保存在prop中。也就是说,在第1次循环时,是取得variant_keys[0]即“ro.hardware”对应的属性值,保存在prop中,如果没有取得到,property_get函数会返回0,则进入下一次循环,依次尝试取得“ ro.product.board”、“ ro.board.platform”、“ ro.arch”对应的属性值,保存在prop中。如果取得了某个variant_keys[i]对应的属性值,则在hw_get_module函数第141-142行,按<MODULE_ID>.variant.so规范,得到模块动态库的名字及路径,其中variant就是我们前面得到的prop的值。
hw_get_module函数第148-153行,如果没有找到variant_keys[i]对应的属性,则使用<MODULE_ID>.default.so。
hw_get_module函数第156-160行,调用load(id, path, module)导入模块动态库,将模块对应的hw_module_t结构体,保存在module变量中。load函数也定义在hardware/libhardware/hardware.c文件中:
56/** 57 * Load the file defined by the variant and if successful 58 * return the dlopen handle and the hmi. 59 * @return 0 = success, !0 = failure. 60 */ 61static int load(const char *id, 62 const char *path, 63 const struct hw_module_t **pHmi) 64{ 65 int status; 66 void *handle; 67 struct hw_module_t *hmi; 68 69 /* 70 * load the symbols resolving undefined symbols before 71 * dlopen returns. Since RTLD_GLOBAL is not or'd in with 72 * RTLD_NOW the external symbols will not be global 73 */ 74 handle = dlopen(path, RTLD_NOW); 75 if (handle == NULL) { 76 char const *err_str = dlerror(); 77 LOGE("load: module=%s\n%s", path, err_str?err_str:"unknown"); 78 status = -EINVAL; 79 goto done; 80 } 81 82 /* Get the address of the struct hal_module_info. */ 83 const char *sym = HAL_MODULE_INFO_SYM_AS_STR; 84 hmi = (struct hw_module_t *)dlsym(handle, sym); 85 if (hmi == NULL) { 86 LOGE("load: couldn't find symbol %s", sym); 87 status = -EINVAL; 88 goto done; 89 } 90 91 /* Check that the id matches */ 92 if (strcmp(id, hmi->id) != 0) { 93 LOGE("load: id=%s != hmi->id=%s", id, hmi->id); 94 status = -EINVAL; 95 goto done; 96 } 97 98 hmi->dso = handle; 99 100 /* success */ 101 status = 0; 102 103 done: 104 if (status != 0) { 105 hmi = NULL; 106 if (handle != NULL) { 107 dlclose(handle); 108 handle = NULL; 109 } 110 } else { 111 LOGV("loaded HAL id=%s path=%s hmi=%p handle=%p", 112 id, path, *pHmi, handle); 113 } 114 115 *pHmi = hmi; 116 117 return status; 118}
第74行,调用dlopen(path, RTLD_NOW)导入path指定的模块动态库。
第83-84行,通过dlsym函数取得HAL_MODULE_INFO_SYM_AS_STR指定的变量的地址,这个地址就是模块对应的自定义结构体地址。
第115行,将hw_module_t结构赋值给传递进来的参数pHmi,即返回给上层调用函数。
分析到这里,我们可以看出,通过hw_get_module函数,Application Framework代码可以通过指定的模块ID找到模块hw_module_t结构体。有了hw_module_t结构体,就可以调用hw_module_t-> methods->open函数,在open函数中,完成对设备对应的hw_device_t结构体的初始化,并指定设备相关的自定义函数。