谈谈NITE 2与OpenCV结合提取指尖坐标

    在谈谈NITE 2与OpenCV结合的第一个程序中,通过手心坐标能够粗略的截取手的图像信息,但还是有种意犹未尽的感觉,所以今天根据OpenCV常用的轮廓、凸包等图像处理函数,在此基础上,获得指尖坐标(我表示很粗糙,请高手们勿喷~~~)。
谈谈NITE 2与OpenCV结合提取指尖坐标_第1张图片

    这里废话不多说了,直接上代码:

// YeHandTrackerUsingOpenCV.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>

// 载入NiTE.h头文件
#include <NiTE.h>

// 载入OpenCV头文件
#include "opencv2/opencv.hpp"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

const unsigned int XRES = 640;
const unsigned int YRES = 480;

const float DEPTH_SCALE_FACTOR = 255./4096.;

const unsigned int BIN_THRESH_OFFSET = 5;

const unsigned int ROI_OFFSET = 70;

const unsigned int MEDIAN_BLUR_K = 5;

const double GRASPING_THRESH = 0.9;

// colors
const Scalar COLOR_BLUE        = Scalar(240,40,0);
const Scalar COLOR_DARK_GREEN  = Scalar(0, 128, 0);
const Scalar COLOR_LIGHT_GREEN = Scalar(0,255,0);
const Scalar COLOR_YELLOW      = Scalar(0,128,200);
const Scalar COLOR_RED         = Scalar(0,0,255);

// conversion from cvConvexityDefect
struct ConvexityDefect
{
    Point start;
    Point end;
    Point depth_point;
    float depth;
};

// Thanks to Jose Manuel Cabrera for part of this C++ wrapper function
void findConvexityDefects(vector<Point>& contour, vector<int>& hull, vector<ConvexityDefect>& convexDefects)
{
    if(hull.size() > 0 && contour.size() > 0)
    {
        CvSeq* contourPoints;
        CvSeq* defects;
        CvMemStorage* storage;
        CvMemStorage* strDefects;
        CvMemStorage* contourStr;
        CvConvexityDefect *defectArray = 0;

        strDefects = cvCreateMemStorage();
        defects = cvCreateSeq( CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvSeq),sizeof(CvPoint), strDefects );

        //We transform our vector<Point> into a CvSeq* object of CvPoint.
        contourStr = cvCreateMemStorage();
        contourPoints = cvCreateSeq(CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), contourStr);
        for(int i = 0; i < (int)contour.size(); i++) {
            CvPoint cp = {contour[i].x,  contour[i].y};
            cvSeqPush(contourPoints, &cp);
        }

        //Now, we do the same thing with the hull index
        int count = (int) hull.size();
        //int hullK[count];
        int* hullK = (int*) malloc(count*sizeof(int));
        for(int i = 0; i < count; i++) { hullK[i] = hull.at(i); }
        CvMat hullMat = cvMat(1, count, CV_32SC1, hullK);

        // calculate convexity defects
        storage = cvCreateMemStorage(0);
        defects = cvConvexityDefects(contourPoints, &hullMat, storage);
        defectArray = (CvConvexityDefect*)malloc(sizeof(CvConvexityDefect)*defects->total);
        cvCvtSeqToArray(defects, defectArray, CV_WHOLE_SEQ);

        for(int i = 0; i<defects->total; i++){
            ConvexityDefect def;
            def.start       = Point(defectArray[i].start->x, defectArray[i].start->y);
            def.end         = Point(defectArray[i].end->x, defectArray[i].end->y);
            def.depth_point = Point(defectArray[i].depth_point->x, defectArray[i].depth_point->y);
            def.depth       = defectArray[i].depth;
            convexDefects.push_back(def);
        }

        // release memory
        cvReleaseMemStorage(&contourStr);
        cvReleaseMemStorage(&strDefects);
        cvReleaseMemStorage(&storage);

    }
}

int main(int argc, char** argv)
{
    // 初始化NITE
    nite::NiTE::initialize();

    // 创建Hand跟踪器
    nite::HandTracker* mHandTracker = new nite::HandTracker;
    mHandTracker->create();
        
    Mat depthShow(YRES, XRES, CV_8UC1);
    Mat handDebug;

    // 从深度图像提取出手的轮廓大小
    Rect roi;
    roi.width  = ROI_OFFSET*2;
    roi.height = ROI_OFFSET*2;

    namedWindow("depthFrame", CV_WINDOW_AUTOSIZE);

    // 循环读取数据流信息并保存在HandFrameRef中
    nite::HandTrackerFrameRef mHandFrame;

    // 开始手势探测
    mHandTracker->startGestureDetection(nite::GESTURE_CLICK);

    int key = 0;
    while(key != 27 && key != 'q')
    {

        // 读取Frame信息
        nite::Status rc = mHandTracker->readFrame(&mHandFrame);
        if (rc != nite::STATUS_OK)
        {
            cout << "GetNextData failed" << endl;
            return 0;
        }

        // 将深度数据转换成OpenCV格式
        const cv::Mat depthRaw( mHandFrame.getDepthFrame().getHeight(), mHandFrame.getDepthFrame().getWidth(), CV_16UC1, 
            (void*)mHandFrame.getDepthFrame().getData());
        /*memcpy(depthRaw.data, mHandFrame.getDepthFrame().getData(), XRES*YRES*2);*/
        depthRaw.convertTo(depthShow, CV_8U, DEPTH_SCALE_FACTOR);

        // 获取定位的手的快照信息,读取此时一共有多少个手势
        const nite::Array<nite::GestureData>& gestures = mHandFrame.getGestures();
        for (int i = 0; i < gestures.getSize(); ++i)
        {
            // 当获取的手势是正确完成了
            if (gestures[i].isComplete())
            {
                // 就开始定位此时手势的坐标
                const nite::Point3f& position = gestures[i].getCurrentPosition();
                cout << "Gesture " << gestures[i].getType() << " at" << position.x << "," << position.y <<"," << position.z;

                // nite::HandId newId ===>typedef short int HandId;
                nite::HandId newId;
                // 开始跟踪该有效手势的手心坐标,并确定该手的Id。
                // 函数原型为:NITE_API NiteStatus niteStartHandTracking(NiteHandTrackerHandle, const NitePoint3f*, NiteHandId* pNewHandId);
                mHandTracker->startHandTracking(gestures[i].getCurrentPosition(), &newId);
            }
        }

        // 获取定位手。
        const nite::Array<nite::HandData>& hands= mHandFrame.getHands();
        for (int i = 0; i < hands.getSize(); ++i)
        {
            const nite::HandData& user = hands[i];

            if (!user.isTracking())
            {
                cout << "Lost hand %d\n" << user.getId();
                nite::HandId id = user.getId();
            }
            else
            {
                if (user.isNew())
                {
                    cout << "Found hand %d\n" << user.getId();
                }
                else
                {

                    float x, y;

                    // 将手心坐标转换映射到深度坐标中
                    mHandTracker->convertHandCoordinatesToDepth(hands[i].getPosition().x, hands[i].getPosition().y,
                        hands[i].getPosition().z, &x, &y);
                    float handDepth = hands[i].getPosition().z * DEPTH_SCALE_FACTOR;
                    roi.x = x - ROI_OFFSET;
                    roi.y = y - ROI_OFFSET;
                    // 从深度图像中提取手的轮廓图像
                    Mat handCpy(depthShow, roi);
                    Mat handMat = handCpy.clone();
                    // binary threshold
                    handMat = (handMat > (handDepth - BIN_THRESH_OFFSET)) & (handMat < (handDepth + BIN_THRESH_OFFSET));

                    // 平滑处理
                    medianBlur(handMat, handMat, MEDIAN_BLUR_K);

                    // create debug image of thresholded hand and cvt to RGB so hints show in color
                    handDebug = handMat.clone();
                    cvtColor(handDebug, handDebug, CV_GRAY2RGB);

                    // 提取手的轮廓
                    std::vector< std::vector<Point> > contours;
                    findContours(handMat, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);

                    if (contours.size()) {
                        for (int i = 0; i < contours.size(); i++) {
                            vector<Point> contour = contours[i];
                            Mat contourMat = Mat(contour);
                            double cArea = contourArea(contourMat);

                            if(cArea > 2000) 
                            {
                                // 计算得到轮廓中心坐标
                                Scalar center = mean(contourMat);
                                Point centerPoint = Point(center.val[0], center.val[1]);

                                // 通过道格拉斯-普克算法得到一个简单曲线(近似的轮廓)
                                vector<Point> approxCurve;
                                approxPolyDP(contourMat, approxCurve, 10, true);

                                // 画出轮廓
                                vector< vector<Point> > debugContourV;
                                debugContourV.push_back(approxCurve);
                                drawContours(handDebug, debugContourV, 0, COLOR_DARK_GREEN, 3);

                                // 计算轮廓点的凸包。
                                vector<int> hull;
                                convexHull(Mat(approxCurve), hull, false, false);

                                // 画出凸包点
                                for(int j = 0; j < hull.size(); j++)
                                {
                                    int index = hull[j];
                                    circle(handDebug, approxCurve[index], 3, COLOR_YELLOW, 2);
                                }

                                // 查找凸缺陷
                                vector<ConvexityDefect> convexDefects;
                                findConvexityDefects(approxCurve, hull, convexDefects);

                                for(int j = 0; j < convexDefects.size(); j++)
                                {
                                    circle(handDebug, convexDefects[j].depth_point, 3, COLOR_BLUE, 2);

                                }

                                // 利用轮廓、凸包、缺陷等点坐标确定指尖等点坐标,并画出
                                vector<Point> hullPoints;
                                for(int k = 0; k < hull.size(); k++)
                                {
                                    int curveIndex = hull[k];
                                    Point p = approxCurve[curveIndex];
                                    hullPoints.push_back(p);
                                }

                                double hullArea  = contourArea(Mat(hullPoints));
                                double curveArea = contourArea(Mat(approxCurve));
                                double handRatio = curveArea/hullArea;

                                if(handRatio > GRASPING_THRESH)
                                    circle(handDebug, centerPoint, 5, COLOR_LIGHT_GREEN, 5);
                                else
                                    circle(handDebug, centerPoint, 5, COLOR_RED, 5);

                                // 显示结果
                                imshow("hand", handDebug);
                            }
                        } 
                    }
                }
            }
        }

        imshow("depthFrame", depthShow);
        key = waitKey(10);
    }

    // 关闭Frame
    mHandFrame.release();

    // 关闭跟踪器
    mHandTracker->destroy();

    // 关闭NITE环境
    nite::NiTE::shutdown();

    return 0;
}

运行结果:

谈谈NITE 2与OpenCV结合提取指尖坐标_第2张图片

    对于初学者的我来说,每增加一行代码,就意味着自己在进步一点;在此记录下自己的学习历程,希望高手们多多提点,希望和我一样的初学者互相学习交流~~~

你可能感兴趣的:(谈谈NITE 2与OpenCV结合提取指尖坐标)