1
//
2187 Accepted 1600K 375MS G++ 4578B --gramcmp
2 // 2187 Accepted 1600K 438MS G++ 4590B --gramcmp1
3 // 利用凸包来求最远点对
4
5 #include < stdio.h >
6 #include < stdlib.h >
7 #include < string .h >
8 #include < ctype.h >
9 #include < math.h >
10 #include < iostream >
11 using namespace std ;
12 #define unllong unsigned long long
13 #define unint unsigned int
14 #define printline printf( "\n" )
15 typedef long long llong ;
16
17 #define zero(x) (((x)>0?(x):-(x))<eps)
18
19 const int Base = 1000000000 ; // 高精度
20 const int Capacity = 100 ; // 高精度
21 const double PI = 2.0 * acos( 0.0 ) ;
22 const double eps = 1e - 8 ;
23 const int INF = 1000000 ;
24
25 const int size = 100010 ;
26
27 struct POINT
28 {
29 double x ;
30 double y ;
31 double k ;
32 };
33 struct POINT point[size] ;
34
35 int stack[size] ;
36 int top = 2 ;
37
38 int inn; int inr ;
39 double outarea ;
40 double outlen ;
41
42 double fdist( double x1, double y1, double x2, double y2 )
43 {
44 return sqrt( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) ) ;
45 }
46
47 void input()
48 {
49 int leftdown = 0 ;
50 for ( int i = 0 ; i < inn; i ++ ) {
51 scanf( " %lf %lf " , & point[i].x, & point[i].y ) ;
52 // if( miny>point[i].y || miny==point[i].y&&minx>point[i].x )
53 if ( point[leftdown].y > point[i].y || zero(point[leftdown].y - point[i].y) && point[leftdown].x > point[i].x )
54 leftdown = i ; // 找到最左下的点
55 }
56 double temp ;
57 temp = point[ 0 ].x ; point[ 0 ].x = point[leftdown].x ; point[leftdown].x = temp ;
58 temp = point[ 0 ].y ; point[ 0 ].y = point[leftdown].y ; point[leftdown].y = temp ;
59 for ( int i = 1 ; i < inn; i ++ ) {
60 point[i].k = atan2( point[i].y - point[ 0 ].y, point[i].x - point[ 0 ].x ) ;
61 } // 以点(minx, miny)计算极角
62 }
63
64 double xmult( POINT & p1, POINT & p2, POINT & p0 )
65 { // 计算叉乘--线段旋转方向和对应的四边形的面积--返回(p1-p0)*(p2-p0)叉积
66 // if叉积为正--p0p1在p0p2的顺时针方向; if(x==0)共线
67
68 return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y) ;
69 }
70
71 int gramcmp1( const void * a, const void * b )
72 {
73 struct POINT * c = ( struct POINT * )a ;
74 struct POINT * d = ( struct POINT * )b ;
75
76 if ( c -> k - d -> k > eps ) return 1 ;
77 else if ( c -> k - d -> k < - 1 * eps ) return - 1 ;
78 else // 斜率相等距离近的点在先
79 return c -> x - d -> x > 0 ? 1 : - 1 ;
80 }
81
82 int gramcmp( const void * a, const void * b )
83 {
84 struct POINT * c = ( struct POINT * )a ;
85 struct POINT * d = ( struct POINT * )b ;
86
87 double xmult_val = xmult( * c, * d, point[ 0 ] ) ;
88 if ( xmult_val > eps ) return - 1 ;
89 else if ( xmult_val < - 1 * eps ) return 1 ;
90 else return c -> x - d -> x > 0 ? 1 : - 1 ;
91 // else
92 // return fdist( c->x,c->y,point[0].x,point[0].y )>fdist(d->x,d->y,point[0].x,point[0].y)? -1:1 ;
93 }
94
95 void gramham()
96 { // 凸包的点存在于stack[]中
97 qsort( point + 1 , inn - 1 , sizeof (point[ 1 ]), gramcmp1 ) ; // 极坐标排序--注意只有(n-1)个点
98
99 // int stack[size] ; int top = 2 ;
100 stack[ 0 ] = 0 ; stack[ 1 ] = 1 ; stack[ 2 ] = 2 ; top = 2 ;
101
102 for ( int i = 3 ; i < inn; i ++ )
103 {
104 while ( top >= 1 && xmult( point[i], point[stack[top]], point[stack[top - 1 ]] ) >=- 1 * eps )
105 top -- ; // 顺时针方向--删除栈顶元素
106 stack[ ++ top] = i ; // 新元素入栈
107 }
108 /*
109 for( int i=0; i<=top; i++ )
110 {
111 //printf( "%lf===%lf\n",point[stack[i]].x, point[stack[i]].y ) ;
112 cout << point[stack[i]].x << "====" << point[stack[i]].y << endl ;
113 }
114 */
115 }
116
117 double flen_poly()
118 { // 计算凸包的周长
119 double len = 0.0 ; double x1, x2, y1, y2 ;
120 for ( int i = 0 ; i < top; i ++ ) {
121 x1 = point[stack[i + 1 ]].x ; x2 = point[stack[i]].x ;
122 y1 = point[stack[i + 1 ]].y ; y2 = point[stack[i]].y ;
123 len += fdist( x1, y1, x2, y2 ) ;
124 }
125 x1 = point[stack[ 0 ]].x ; x2 = point[stack[top]].x ;
126 y1 = point[stack[ 0 ]].y ; y2 = point[stack[top]].y ;
127 len += fdist( x1, y1, x2, y2 ) ;
128
129 return len ;
130 }
131
132 double farea_poly( int n, POINT poly[] )
133 {
134 double area = 0.0 ; double s1 = 0.0 , s2 = 0.0 ;
135 for ( int i = 0 ; i < n; i ++ )
136 {
137 s1 += poly[stack[(i + 1 ) % n]].y * poly[stack[i % n]].x ;
138 s2 += poly[stack[(i + 1 ) % n]].y * poly[stack[(i + 2 ) % n]].x ;
139 }
140
141 return fabs( s1 - s2 ) / 2 ;
142 }
143
144 int fdist2( double x1, double y1, double x2, double y2 )
145 {
146 return ( int )( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) ) ;
147 }
148
149 void find_maxlength()
150 {
151 int maxlen = - 1 ; int curlen = 0 ;
152 double x1, x2, y1, y2 ;
153 for ( int sn = 0 ; sn <= top; sn ++ )
154 {
155 x1 = point[stack[sn]].x, y1 = point[stack[sn]].y ;
156 for ( int en = sn + 1 ; en <= top; en ++ )
157 {
158 x2 = point[stack[en]].x, y2 = point[stack[en]].y ;
159 curlen = fdist2( x1, y1, x2, y2 ) ;
160 if ( maxlen < curlen ) maxlen = curlen ;
161 }
162 }
163
164 printf( " %d\n " , maxlen ) ;
165 }
166
167 void process()
168 {
169 gramham() ; // 保存好凸包的点在stack[]中
170
171 find_maxlength() ;
172 }
173
174 int main()
175 {
176 // freopen( "fc.in", "r", stdin ) ;
177 // freopen( "fc.out","w",stdout ) ;
178
179 // freopen( "in.txt", "r", stdin ) ;
180
181 // while( scanf( "%d %d", &inn, &inr ) != EOF )
182 scanf( " %d " , & inn ) ;
183 {
184 input() ;
185
186 process() ;
187
188 // output() ;
189 }
190
191 return 0 ;
192 }
2 // 2187 Accepted 1600K 438MS G++ 4590B --gramcmp1
3 // 利用凸包来求最远点对
4
5 #include < stdio.h >
6 #include < stdlib.h >
7 #include < string .h >
8 #include < ctype.h >
9 #include < math.h >
10 #include < iostream >
11 using namespace std ;
12 #define unllong unsigned long long
13 #define unint unsigned int
14 #define printline printf( "\n" )
15 typedef long long llong ;
16
17 #define zero(x) (((x)>0?(x):-(x))<eps)
18
19 const int Base = 1000000000 ; // 高精度
20 const int Capacity = 100 ; // 高精度
21 const double PI = 2.0 * acos( 0.0 ) ;
22 const double eps = 1e - 8 ;
23 const int INF = 1000000 ;
24
25 const int size = 100010 ;
26
27 struct POINT
28 {
29 double x ;
30 double y ;
31 double k ;
32 };
33 struct POINT point[size] ;
34
35 int stack[size] ;
36 int top = 2 ;
37
38 int inn; int inr ;
39 double outarea ;
40 double outlen ;
41
42 double fdist( double x1, double y1, double x2, double y2 )
43 {
44 return sqrt( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) ) ;
45 }
46
47 void input()
48 {
49 int leftdown = 0 ;
50 for ( int i = 0 ; i < inn; i ++ ) {
51 scanf( " %lf %lf " , & point[i].x, & point[i].y ) ;
52 // if( miny>point[i].y || miny==point[i].y&&minx>point[i].x )
53 if ( point[leftdown].y > point[i].y || zero(point[leftdown].y - point[i].y) && point[leftdown].x > point[i].x )
54 leftdown = i ; // 找到最左下的点
55 }
56 double temp ;
57 temp = point[ 0 ].x ; point[ 0 ].x = point[leftdown].x ; point[leftdown].x = temp ;
58 temp = point[ 0 ].y ; point[ 0 ].y = point[leftdown].y ; point[leftdown].y = temp ;
59 for ( int i = 1 ; i < inn; i ++ ) {
60 point[i].k = atan2( point[i].y - point[ 0 ].y, point[i].x - point[ 0 ].x ) ;
61 } // 以点(minx, miny)计算极角
62 }
63
64 double xmult( POINT & p1, POINT & p2, POINT & p0 )
65 { // 计算叉乘--线段旋转方向和对应的四边形的面积--返回(p1-p0)*(p2-p0)叉积
66 // if叉积为正--p0p1在p0p2的顺时针方向; if(x==0)共线
67
68 return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y) ;
69 }
70
71 int gramcmp1( const void * a, const void * b )
72 {
73 struct POINT * c = ( struct POINT * )a ;
74 struct POINT * d = ( struct POINT * )b ;
75
76 if ( c -> k - d -> k > eps ) return 1 ;
77 else if ( c -> k - d -> k < - 1 * eps ) return - 1 ;
78 else // 斜率相等距离近的点在先
79 return c -> x - d -> x > 0 ? 1 : - 1 ;
80 }
81
82 int gramcmp( const void * a, const void * b )
83 {
84 struct POINT * c = ( struct POINT * )a ;
85 struct POINT * d = ( struct POINT * )b ;
86
87 double xmult_val = xmult( * c, * d, point[ 0 ] ) ;
88 if ( xmult_val > eps ) return - 1 ;
89 else if ( xmult_val < - 1 * eps ) return 1 ;
90 else return c -> x - d -> x > 0 ? 1 : - 1 ;
91 // else
92 // return fdist( c->x,c->y,point[0].x,point[0].y )>fdist(d->x,d->y,point[0].x,point[0].y)? -1:1 ;
93 }
94
95 void gramham()
96 { // 凸包的点存在于stack[]中
97 qsort( point + 1 , inn - 1 , sizeof (point[ 1 ]), gramcmp1 ) ; // 极坐标排序--注意只有(n-1)个点
98
99 // int stack[size] ; int top = 2 ;
100 stack[ 0 ] = 0 ; stack[ 1 ] = 1 ; stack[ 2 ] = 2 ; top = 2 ;
101
102 for ( int i = 3 ; i < inn; i ++ )
103 {
104 while ( top >= 1 && xmult( point[i], point[stack[top]], point[stack[top - 1 ]] ) >=- 1 * eps )
105 top -- ; // 顺时针方向--删除栈顶元素
106 stack[ ++ top] = i ; // 新元素入栈
107 }
108 /*
109 for( int i=0; i<=top; i++ )
110 {
111 //printf( "%lf===%lf\n",point[stack[i]].x, point[stack[i]].y ) ;
112 cout << point[stack[i]].x << "====" << point[stack[i]].y << endl ;
113 }
114 */
115 }
116
117 double flen_poly()
118 { // 计算凸包的周长
119 double len = 0.0 ; double x1, x2, y1, y2 ;
120 for ( int i = 0 ; i < top; i ++ ) {
121 x1 = point[stack[i + 1 ]].x ; x2 = point[stack[i]].x ;
122 y1 = point[stack[i + 1 ]].y ; y2 = point[stack[i]].y ;
123 len += fdist( x1, y1, x2, y2 ) ;
124 }
125 x1 = point[stack[ 0 ]].x ; x2 = point[stack[top]].x ;
126 y1 = point[stack[ 0 ]].y ; y2 = point[stack[top]].y ;
127 len += fdist( x1, y1, x2, y2 ) ;
128
129 return len ;
130 }
131
132 double farea_poly( int n, POINT poly[] )
133 {
134 double area = 0.0 ; double s1 = 0.0 , s2 = 0.0 ;
135 for ( int i = 0 ; i < n; i ++ )
136 {
137 s1 += poly[stack[(i + 1 ) % n]].y * poly[stack[i % n]].x ;
138 s2 += poly[stack[(i + 1 ) % n]].y * poly[stack[(i + 2 ) % n]].x ;
139 }
140
141 return fabs( s1 - s2 ) / 2 ;
142 }
143
144 int fdist2( double x1, double y1, double x2, double y2 )
145 {
146 return ( int )( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) ) ;
147 }
148
149 void find_maxlength()
150 {
151 int maxlen = - 1 ; int curlen = 0 ;
152 double x1, x2, y1, y2 ;
153 for ( int sn = 0 ; sn <= top; sn ++ )
154 {
155 x1 = point[stack[sn]].x, y1 = point[stack[sn]].y ;
156 for ( int en = sn + 1 ; en <= top; en ++ )
157 {
158 x2 = point[stack[en]].x, y2 = point[stack[en]].y ;
159 curlen = fdist2( x1, y1, x2, y2 ) ;
160 if ( maxlen < curlen ) maxlen = curlen ;
161 }
162 }
163
164 printf( " %d\n " , maxlen ) ;
165 }
166
167 void process()
168 {
169 gramham() ; // 保存好凸包的点在stack[]中
170
171 find_maxlength() ;
172 }
173
174 int main()
175 {
176 // freopen( "fc.in", "r", stdin ) ;
177 // freopen( "fc.out","w",stdout ) ;
178
179 // freopen( "in.txt", "r", stdin ) ;
180
181 // while( scanf( "%d %d", &inn, &inr ) != EOF )
182 scanf( " %d " , & inn ) ;
183 {
184 input() ;
185
186 process() ;
187
188 // output() ;
189 }
190
191 return 0 ;
192 }