redis memory
这一节介绍redis中内存分配相关的api,下一节介绍redis内存使用过程中的一些细节。
redis中所有的内存分配都由自己接管。主要由zmalloc.c和zmalloc.h中的zmalloc、zremalloc、zfree实现。
#ifdef _WIN32
fprintf(stderr, " zmalloc: Out of memory trying to allocate %llu bytes\n " ,
(unsigned long long )size);
#else
fprintf(stderr, " zmalloc: Out of memory trying to allocate %zu bytes\n " ,
size);
#endif
fflush(stderr);
abort();
}
void * zmalloc(size_t size) {
void * ptr = malloc(size + PREFIX_SIZE);
if ( ! ptr) zmalloc_oom(size);
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(zmalloc_size(ptr),size);
return ptr;
#else
* ((size_t * )ptr) = size;
update_zmalloc_stat_alloc(size + PREFIX_SIZE,size);
return ( char * )ptr + PREFIX_SIZE;
#endif
}
void * zcalloc(size_t size) {
void * ptr = calloc( 1 , size + PREFIX_SIZE);
if ( ! ptr) zmalloc_oom(size);
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(zmalloc_size(ptr),size);
return ptr;
#else
* ((size_t * )ptr) = size;
update_zmalloc_stat_alloc(size + PREFIX_SIZE,size);
return ( char * )ptr + PREFIX_SIZE;
#endif
}
void * zrealloc( void * ptr, size_t size) {
#ifndef HAVE_MALLOC_SIZE
void * realptr;
#endif
size_t oldsize;
void * newptr;
if (ptr == NULL) return zmalloc(size);
#ifdef HAVE_MALLOC_SIZE
oldsize = zmalloc_size(ptr);
newptr = realloc(ptr,size);
if ( ! newptr) zmalloc_oom(size);
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(zmalloc_size(newptr),size);
return newptr;
#else
realptr = ( char * )ptr - PREFIX_SIZE;
oldsize = * ((size_t * )realptr);
newptr = realloc(realptr,size + PREFIX_SIZE);
if ( ! newptr) zmalloc_oom(size);
* ((size_t * )newptr) = size;
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(size,size);
return ( char * )newptr + PREFIX_SIZE;
#endif
}
void zfree( void * ptr) {
#ifndef HAVE_MALLOC_SIZE
void * realptr;
size_t oldsize;
#endif
if (ptr == NULL) return ;
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_free(zmalloc_size(ptr));
free(ptr);
#else
realptr = ( char * )ptr - PREFIX_SIZE;
oldsize = * ((size_t * )realptr);
update_zmalloc_stat_free(oldsize + PREFIX_SIZE);
free(realptr);
#endif
}
可以看到,系统中除了分配请求大小的内存外,还在该内存块头部保存了该内存块的大小,这样,释放的时候可以通过该大小找到该内存块的起始位置.
另外对于 apple系统,可以用malloc_size(redis_malloc_size是对它的封装)取得指针所指向的内存块大小,因此就不需要手动保存大小了。
介绍zmalloc/zfree函数时,我们看到redis会调用increment_used_memory/decrement_used_memory,这两个宏其实就是对static变量used_memory进行指定大小的增加/减少,该变量保存了redis所使用的内存大小
分配内存的线程安全性是由底层系统的malloc系列函数来保证的,而used_memory变量的线程安全性取决于线程锁zmalloc_thread_safe的值。由于redis处理客户端连接是单进程单线程事件多路循环的,那么就有一个疑问,redis在什么情况下,需要多线程保护了?在后续的介绍中,我们会看到,redis的虚拟内存(VM)可能启用多线程。
我们来看看zmalloc_thread_safe 的相关处理。zmalloc_thread_safe 初始值为0,仅在zmalloc_enable_thread_safeness函数中改为1,而zmalloc_enable_thread_safeness仅在全局变量server.vm_max_threads!=0(也即vm启用多线程时),才在vmInit中调用。
内存相关的函数,除了zmalloc、zremalloc、zfree等直接操作内存外,常用的就是使用zmalloc_used_memory返回已分配的内存大小了,redis对内存的监控仅限于此。
redis在某些位置输出log时需要调用该函数输出已分配的内存大小外,比如serverCron中的调用: int serverCron( struct aeEventLoop * eventLoop, long long id, void * clientData) {
REDIS_NOTUSED(eventLoop);
REDIS_NOTUSED(id);
REDIS_NOTUSED(clientData);
/* We take a cached value of the unix time in the global state because
* with virtual memory and aging there is to store the current time
* in objects at every object access, and accuracy is not needed.
* To access a global var is faster than calling time(NULL) */
server.unixtime = time(NULL);
/* We have just 22 bits per object for LRU information.
* So we use an (eventually wrapping) LRU clock with 10 seconds resolution.
* 2^22 bits with 10 seconds resoluton is more or less 1.5 years.
*
* Note that even if this will wrap after 1.5 years it's not a problem,
* everything will still work but just some object will appear younger
* to Redis. But for this to happen a given object should never be touched
* for 1.5 years.
*
* Note that you can change the resolution altering the
* REDIS_LRU_CLOCK_RESOLUTION define.
*/
updateLRUClock();
/* Record the max memory used since the server was started. */
if (zmalloc_used_memory() > server.stat_peak_memory)
server.stat_peak_memory = zmalloc_used_memory();
/* We received a SIGTERM, shutting down here in a safe way, as it is
* not ok doing so inside the signal handler. */
if (server.shutdown_asap) {
if (prepareForShutdown() == REDIS_OK) exit(0);
redisLog(REDIS_WARNING,"SIGTERM received but errors trying to shut down the server, check the logs for more information");
}
/* Show some info about non-empty databases */
for (j = 0; j < server.dbnum; j++) {
long long size, used, vkeys;
size = dictSlots(server.db[j].dict);
used = dictSize(server.db[j].dict);
vkeys = dictSize(server.db[j].expires);
if (!(loops % 50) && (used || vkeys)) {
redisLog(REDIS_VERBOSE,"DB %d: %lld keys (%lld volatile) in %lld slots HT.",j,used,vkeys,size);
/* dictPrintStats(server.dict); */
}
}
/* We don't want to resize the hash tables while a bacground saving
* is in progress: the saving child is created using fork() that is
* implemented with a copy-on-write semantic in most modern systems, so
* if we resize the HT while there is the saving child at work actually
* a lot of memory movements in the parent will cause a lot of pages
* copied. */
if (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1) {
if (!(loops % 10)) tryResizeHashTables();
if (server.activerehashing) incrementallyRehash();
}
/* Show information about connected clients */
if (!(loops % 50)) {
#ifdef _WIN32
redisLog(REDIS_VERBOSE,"%d clients connected (%d slaves), %llu bytes in use",
listLength(server.clients)-listLength(server.slaves),
listLength(server.slaves),
(unsigned long long)zmalloc_used_memory());
#else
redisLog(REDIS_VERBOSE,"%d clients connected (%d slaves), %zu bytes in use",
listLength(server.clients)-listLength(server.slaves),
listLength(server.slaves),
zmalloc_used_memory());
#endif
}
/* Close connections of timedout clients */
if ((server.maxidletime && !(loops % 100)) || server.bpop_blocked_clients)
closeTimedoutClients();
/* Start a scheduled AOF rewrite if this was requested by the user while
* a BGSAVE was in progress. */
if (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1 &&
server.aofrewrite_scheduled)
{
rewriteAppendOnlyFileBackground();
}
/* Check if a background saving or AOF rewrite in progress terminated */
if (server.bgsavechildpid != -1 || server.bgrewritechildpid != -1) {
int statloc;
pid_t pid;
if ((pid = wait3(&statloc,WNOHANG,NULL)) != 0) {
if (pid == server.bgsavechildpid) {
backgroundSaveDoneHandler(statloc);
} else {
backgroundRewriteDoneHandler(statloc);
}
updateDictResizePolicy();
}
} else {
time_t now = time(NULL);
/* If there is not a background saving in progress check if
* we have to save now */
for (j = 0; j < server.saveparamslen; j++) {
struct saveparam *sp = server.saveparams+j;
if (server.dirty >= sp->changes &&
now-server.lastsave > sp->seconds) {
redisLog(REDIS_NOTICE,"%d changes in %d seconds. Saving ",
sp->changes, sp->seconds);
rdbSaveBackground(server.dbfilename);
#ifdef _WIN32
/* On windows this will save in foreground and block */
/* Here we are allready saved, and we should return */
return 100;
#else
break;
#endif
}
}
/* Trigger an AOF rewrite if needed */
if (server.bgsavechildpid == -1 &&
server.bgrewritechildpid == -1 &&
server.auto_aofrewrite_perc &&
server.appendonly_current_size > server.auto_aofrewrite_min_size)
{
long long base = server.auto_aofrewrite_base_size ?
server.auto_aofrewrite_base_size : 1;
long long growth = (server.appendonly_current_size*100/ base) - 100;
if (growth >= server.auto_aofrewrite_perc) {
redisLog(REDIS_NOTICE,"Starting automatic rewriting of AOF on %lld%% growth",growth);
rewriteAppendOnlyFileBackground();
}
}
}
/* If we postponed an AOF buffer flush, let's try to do it every time the
* cron function is called. */
if (server.aof_flush_postponed_start) flushAppendOnlyFile(0);
/* Expire a few keys per cycle, only if this is a master.
* On slaves we wait for DEL operations synthesized by the master
* in order to guarantee a strict consistency. */
if (server.masterhost == NULL) activeExpireCycle();
/* Replication cron function -- used to reconnect to master and
* to detect transfer failures. */
if (!(loops % 10)) replicationCron();
server.cronloops++;
return 100;
}
used_memory变量保存了redis当前所使用的内存。其值常用来跟server.vm_max_memory、server.maxmemory进行比较。vm_max_memory表示redis vm启动swap的内存阈值,在超过该值后应启动vm的swap操作;maxmemory表示redis允许分配的最大内存,在超过该值后应进行内存的释放。这些比较主要在rdbLoad、loadAppendOnlyFile、serverCron、processCommand、vmThreadedIOCompletedJob等函数中。值得注意的是,尽管redis会尽量将内存使用量降低到server.maxmemory(甚至server.vm_max_memory)之下,但并不对此保证。
接下来的一节我们分析下rdbLoad、loadAppendOnlyFile、serverCron、processCommand、vmThreadedIOCompletedJob的内存检查策略。
在rdbLoad、loadAppendOnlyFile(分别代表以快照、aof方式进行数据的持久化后db的加载)中会检查vm_max_memory。超过vm_max_memory后,会先调用vmSwapOneObjectBlocking swap值到vm中,若一直到vmSwapOneObjectBlocking返回出错时,内存使用量还是超过vm_max_memory,则置swap_all_values为1,这样后面加载的数据都直接使用vmSwapObjectBlocking被swap到vm中,至于vmSwapOneObjectBlocking、vmSwapObjectBlocking怎么实现的(二者都是阻塞方式),我们在vm章节中再做详细分析。当然,在这两个函数中,对vm_max_memory的比较有所放宽,也就是只有比vm_max_memory多32M字节时,才进行swap的操作。从这里也可以看出,加载db时并不和server.maxmemory进行比较。此时,若超过最大内存限制,redis此时不管,也许加载时直接down掉(超过可用内存),或者等到加载完后运行到后面介绍的释放过程再进行释放。当然,检查vm_max_memory,并调用vmSwapOneObjectBlocking等函数是否起作用,还要看是否开启vm机制
FILE * fp;
uint32_t dbid;
int type, rdbver;
redisDb * db = server.db + 0 ;
char buf[ 1024 ];
time_t expiretime, now = time(NULL);
long loops = 0 ;
#ifdef _WIN32
fp = fopen(filename, " rb " );
#else
fp = fopen(filename, " r " );
#endif
if ( ! fp) {
errno = ENOENT;
return REDIS_ERR;
}
if (fread(buf, 9 , 1 ,fp) == 0 ) goto eoferr;
buf[ 9 ] = ' \0 ' ;
if (memcmp(buf, " REDIS " , 5 ) != 0 ) {
fclose(fp);
redisLog(REDIS_WARNING, " Wrong signature trying to load DB from file " );
errno = EINVAL;
return REDIS_ERR;
}
rdbver = atoi(buf + 5 );
if (rdbver < 1 || rdbver > 2 ) {
fclose(fp);
redisLog(REDIS_WARNING, " Can't handle RDB format version %d " ,rdbver);
errno = EINVAL;
return REDIS_ERR;
}
startLoading(fp);
while ( 1 ) {
robj * key, * val;
expiretime = - 1 ;
/* Serve the clients from time to time */
if ( ! (loops ++ % 1000 )) {
loadingProgress((off_t)ftello(fp));
aeProcessEvents(server.el, AE_FILE_EVENTS | AE_DONT_WAIT);
}
/* Read type. */
if ((type = rdbLoadType(fp)) == - 1 ) goto eoferr;
if (type == REDIS_EXPIRETIME) {
if ((expiretime = rdbLoadTime(fp)) == - 1 ) goto eoferr;
/* We read the time so we need to read the object type again */
if ((type = rdbLoadType(fp)) == - 1 ) goto eoferr;
}
if (type == REDIS_EOF) break ;
/* Handle SELECT DB opcode as a special case */
if (type == REDIS_SELECTDB) {
if ((dbid = rdbLoadLen(fp,NULL)) == REDIS_RDB_LENERR)
goto eoferr;
if (dbid >= (unsigned)server.dbnum) {
redisLog(REDIS_WARNING, " FATAL: Data file was created with a Redis server configured to handle more than %d databases. Exiting\n " , server.dbnum);
exit( 1 );
}
db = server.db + dbid;
continue ;
}
/* Read key */
if ((key = rdbLoadStringObject(fp)) == NULL) goto eoferr;
/* Read value */
if ((val = rdbLoadObject(type,fp)) == NULL) goto eoferr;
/* Check if the key already expired. This function is used when loading
* an RDB file from disk, either at startup, or when an RDB was
* received from the master. In the latter case, the master is
* responsible for key expiry. If we would expire keys here, the
* snapshot taken by the master may not be reflected on the slave. */
if (server.masterhost == NULL && expiretime != - 1 && expiretime < now) {
decrRefCount(key);
decrRefCount(val);
continue ;
}
/* Add the new object in the hash table */
dbAdd(db,key,val);
/* Set the expire time if needed */
if (expiretime != - 1 ) setExpire(db,key,expiretime);
decrRefCount(key);
}
fclose(fp);
stopLoading();
return REDIS_OK;
eoferr: /* unexpected end of file is handled here with a fatal exit */
redisLog(REDIS_WARNING, " Short read or OOM loading DB. Unrecoverable error, aborting now. " );
exit( 1 );
return REDIS_ERR; /* Just to avoid warning */
}
而在处理客户端命令的核心函数processCommand中,在超过内存阈值maxmemory时,会先调用freeMemoryIfNeeded释放一些内存;在释放内存后若还是超过了设置的内存大小,则在客户端命令设置了REDIS_CMD_DENYOOM参数时返回内存出错信息, 否则还是会正常处理。
/* The QUIT command is handled separately. Normal command procs will
* go through checking for replication and QUIT will cause trouble
* when FORCE_REPLICATION is enabled and would be implemented in
* a regular command proc. */
if (!strcasecmp(c->argv[0]->ptr,"quit")) {
addReply(c,shared.ok);
c->flags |= REDIS_CLOSE_AFTER_REPLY;
return REDIS_ERR;
}
/* Now lookup the command and check ASAP about trivial error conditions
* such as wrong arity, bad command name and so forth. */
c->cmd = c->lastcmd = lookupCommand(c->argv[0]->ptr);
if (!c->cmd) {
addReplyErrorFormat(c,"unknown command '%s'",
( char*)c->argv[0]->ptr);
return REDIS_OK;
} else if ((c->cmd->arity > 0 && c->cmd->arity != c->argc) ||
(c->argc < -c->cmd->arity)) {
addReplyErrorFormat(c,"wrong number of arguments for '%s' command",
c->cmd->name);
return REDIS_OK;
}
/* Check if the user is authenticated */
if (server.requirepass && !c->authenticated && c->cmd->proc != authCommand)
{
addReplyError(c,"operation not permitted");
return REDIS_OK;
}
/* Handle the maxmemory directive.
*
* First we try to free some memory if possible (if there are volatile
* keys in the dataset). If there are not the only thing we can do
* is returning an error. */
if (server.maxmemory) {
int retval = freeMemoryIfNeeded();
if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {
addReplyError(c,
"command not allowed when used memory > 'maxmemory'");
return REDIS_OK;
}
}
/* Only allow SUBSCRIBE and UNSUBSCRIBE in the context of Pub/Sub */
if ((dictSize(c->pubsub_channels) > 0 || listLength(c->pubsub_patterns) > 0)
&&
c->cmd->proc != subscribeCommand &&
c->cmd->proc != unsubscribeCommand &&
c->cmd->proc != psubscribeCommand &&
c->cmd->proc != punsubscribeCommand) {
addReplyError(c,"only (P)SUBSCRIBE / (P)UNSUBSCRIBE / QUIT allowed in this context");
return REDIS_OK;
}
/* Only allow INFO and SLAVEOF when slave-serve-stale-data is no and
* we are a slave with a broken link with master. */
if (server.masterhost && server.replstate != REDIS_REPL_CONNECTED &&
server.repl_serve_stale_data == 0 &&
c->cmd->proc != infoCommand && c->cmd->proc != slaveofCommand)
{
addReplyError(c,
"link with MASTER is down and slave-serve-stale-data is set to no");
return REDIS_OK;
}
/* Loading DB? Return an error if the command is not INFO */
if (server.loading && c->cmd->proc != infoCommand) {
addReply(c, shared.loadingerr);
return REDIS_OK;
}
/* Exec the command */
if (c->flags & REDIS_MULTI &&
c->cmd->proc != execCommand && c->cmd->proc != discardCommand &&
c->cmd->proc != multiCommand && c->cmd->proc != watchCommand)
{
queueMultiCommand(c);
addReply(c,shared.queued);
} else {
call(c);
}
return REDIS_OK;
}
再来看看 freeMemoryIfNeeded是怎么释放内存的。释放时先调用tryFreeOneObjectFromFreelist释放内存,在内存仍不够时,会试图释放带 expire标记的key。对于每个db中的expire dict,每次会随机选择3个key,并删除会最先expire的key(此时就很可能丢失带expire标记的数据了)。
size_t mem_used, mem_tofree, mem_freed;
int slaves = listLength(server.slaves);
/* Remove the size of slaves output buffers and AOF buffer from the
* count of used memory. */
mem_used = zmalloc_used_memory();
if (slaves) {
listIter li;
listNode *ln;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
redisClient *slave = listNodeValue(ln);
unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
if (obuf_bytes > mem_used)
mem_used = 0;
else
mem_used -= obuf_bytes;
}
}
if (server.appendonly) {
mem_used -= sdslen(server.aofbuf);
mem_used -= sdslen(server.bgrewritebuf);
}
/* Check if we are over the memory limit. */
if (mem_used <= server.maxmemory) return REDIS_OK;
if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
return REDIS_ERR; /* We need to free memory, but policy forbids. */
/* Compute how much memory we need to free. */
mem_tofree = (size_t)(mem_used - server.maxmemory);
mem_freed = 0;
while (mem_freed < mem_tofree) {
int j, k, keys_freed = 0;
for (j = 0; j < server.dbnum; j++) {
long bestval = 0; /* just to prevent warning */
sds bestkey = NULL;
struct dictEntry *de;
redisDb *db = server.db+j;
dict *dict;
if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)
{
dict = server.db[j].dict;
} else {
dict = server.db[j].expires;
}
if (dictSize(dict) == 0) continue;
/* volatile-random and allkeys-random policy */
if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
{
de = dictGetRandomKey(dict);
bestkey = dictGetEntryKey(de);
}
/* volatile-lru and allkeys-lru policy */
else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
{
for (k = 0; k < server.maxmemory_samples; k++) {
sds thiskey;
long thisval;
robj *o;
de = dictGetRandomKey(dict);
thiskey = dictGetEntryKey(de);
/* When policy is volatile-lru we need an additonal lookup
* to locate the real key, as dict is set to db->expires. */
if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
de = dictFind(db->dict, thiskey);
o = dictGetEntryVal(de);
thisval = estimateObjectIdleTime(o);
/* Higher idle time is better candidate for deletion */
if (bestkey == NULL || thisval > bestval) {
bestkey = thiskey;
bestval = thisval;
}
}
}
/* volatile-ttl */
else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
for (k = 0; k < server.maxmemory_samples; k++) {
sds thiskey;
long thisval;
de = dictGetRandomKey(dict);
thiskey = dictGetEntryKey(de);
thisval = ( long) dictGetEntryVal(de);
/* Expire sooner (minor expire unix timestamp) is better
* candidate for deletion */
if (bestkey == NULL || thisval < bestval) {
bestkey = thiskey;
bestval = thisval;
}
}
}
/* Finally remove the selected key. */
if (bestkey) {
long long delta;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj);
/* We compute the amount of memory freed by dbDelete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = ( long long) zmalloc_used_memory();
dbDelete(db,keyobj);
delta -= ( long long) zmalloc_used_memory();
mem_freed += (size_t)delta;
server.stat_evictedkeys++;
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
}
}
if (!keys_freed) return REDIS_ERR; /* nothing to free */
}
return REDIS_OK;
}
最后我们来看看tryFreeOneObjectFromFreelist函数。redis会将系统中的无效list node(即该node已解除对其内部value的引用)放到server.objfreelist链表中,平时如果需要list node,可直接从该list中获得一个,但此刻因为内存不够,该释放它们了。
robj *o;
if (server.vm_enabled) pthread_mutex_lock(&server.obj_freelist_mutex);
if (listLength(server.objfreelist)) {
listNode *head = listFirst(server.objfreelist);
o = listNodeValue(head);
listDelNode(server.objfreelist,head);
if (server.vm_enabled) pthread_mutex_unlock(&server.obj_freelist_mutex);
zfree(o);
return REDIS_OK;
} else {
if (server.vm_enabled) pthread_mutex_unlock(&server.obj_freelist_mutex);
return REDIS_ERR;
}
}
前面的过程搞清后,就可以回答一个问题了。
redis不开启VM时,内存超过maxmemory设置后,是怎么处理的?
不开启VM,redis并不保证内存使用一定低于maxmemory,只是会尽可能释放。
先看client,对于有些会增加内存使用的命令,比如set,此时会返回出错信息。
释放策略是:因为redis会保存先前已不再使用的object,也就是一个object链表,平时这个链表的作用使得redis可以直接从上面取得一个object,不需要使用zmalloc分配。
当内存超过阈值时,这个链表就会首先被释放了。
若还是超过内存阈值,redis对于每个db,会随机选择3个带expire标记的key, 并释放最先expire的key及其val。
但如果此后还是超过内存阈值(把所有带expire标记的 都释放后),我想redis是没办法了。
尽管如此,redis使用的内存>设置的maxmemory,只会出现在一开始加载的数据就超过maxmemroy。这样的话,client调用set等命令会一直返回出错信息。