在通用块层中,bio用来描述单一的I/O请求,它记录了一次I/O操作所必需的相关信息,如用于I/O操作的数据缓存位置,I/O操作的块设备起始扇区,是读操作还是写操作等等。struct bio的定义如下
struct bio { sector_t bi_sector; /* device address in 512 byte sectors */ struct bio *bi_next; /* request queue link */ struct block_device *bi_bdev; unsigned long bi_flags; /* status, command, etc */ unsigned long bi_rw; /* bottom bits READ/WRITE, * top bits priority */ unsigned short bi_vcnt; /* how many bio_vec's */ unsigned short bi_idx; /* current index into bvl_vec */ /* Number of segments in this BIO after * physical address coalescing is performed. */ unsigned int bi_phys_segments; unsigned int bi_size; /* residual I/O count */ /* * To keep track of the max segment size, we account for the * sizes of the first and last mergeable segments in this bio. */ unsigned int bi_seg_front_size; unsigned int bi_seg_back_size; unsigned int bi_max_vecs; /* max bvl_vecs we can hold */ unsigned int bi_comp_cpu; /* completion CPU */ atomic_t bi_cnt; /* pin count */ struct bio_vec *bi_io_vec; /* the actual vec list */ bio_end_io_t *bi_end_io; void *bi_private; #if defined(CONFIG_BLK_DEV_INTEGRITY) struct bio_integrity_payload *bi_integrity; /* data integrity */ #endif bio_destructor_t *bi_destructor; /* destructor */ /* * We can inline a number of vecs at the end of the bio, to avoid * double allocations for a small number of bio_vecs. This member * MUST obviously be kept at the very end of the bio. */ struct bio_vec bi_inline_vecs[0]; };
bi_sector:该I/O操作的起始扇区号
bi_rw:指明了读写方向
bi_vcnt:该I/O操作中涉及到了多少个缓存向量,每个缓存向量由[page,offset,len]来描述
bi_idx:指示当前的缓存向量
bi_io_vec:缓存向量数组
缓存向量的定义:
struct bio_vec { struct page *bv_page; unsigned int bv_len; unsigned int bv_offset; };
struct request用于描述提交给块设备的I/O请求,bio会动态地添加进request,因此一个request往往会包含若干相邻的bio。
struct request { struct list_head queuelist; struct call_single_data csd; int cpu; struct request_queue *q; unsigned int cmd_flags; enum rq_cmd_type_bits cmd_type; unsigned long atomic_flags; /* the following two fields are internal, NEVER access directly */ sector_t __sector; /* sector cursor */ unsigned int __data_len; /* total data len */ struct bio *bio; struct bio *biotail; struct hlist_node hash; /* merge hash */ /* * The rb_node is only used inside the io scheduler, requests * are pruned when moved to the dispatch queue. So let the * completion_data share space with the rb_node. */ union { struct rb_node rb_node; /* sort/lookup */ void *completion_data; }; /* * two pointers are available for the IO schedulers, if they need * more they have to dynamically allocate it. */ void *elevator_private; void *elevator_private2; struct gendisk *rq_disk; unsigned long start_time; /* Number of scatter-gather DMA addr+len pairs after * physical address coalescing is performed. */ unsigned short nr_phys_segments; unsigned short ioprio; void *special; /* opaque pointer available for LLD use */ char *buffer; /* kaddr of the current segment if available */ int tag; int errors; int ref_count; /* * when request is used as a packet command carrier */ unsigned short cmd_len; unsigned char __cmd[BLK_MAX_CDB]; unsigned char *cmd; unsigned int extra_len; /* length of alignment and padding */ unsigned int sense_len; unsigned int resid_len; /* residual count */ void *sense; unsigned long deadline; struct list_head timeout_list; unsigned int timeout; int retries; /* * completion callback. */ rq_end_io_fn *end_io; void *end_io_data; /* for bidi */ struct request *next_rq; };
queuelist:用于将request链入请求队列的链表元素
q:指向所属的请求队列
__sector:下一个要传输的bio的起始扇区号
__data_len:request要传输的数据字节数
bio,biotail:用于维护request中的bio链表
在之前介绍的gendisk结构中,可以看到每个块设备(或分区)都对应了一个request_queue的结构,该结构用来容纳request,并且包含了相应的递交request以及I/O调度的方法
递交一个bio的主要工作是从generic_make_request()函数开始的,我们以此为入口来分析一个bio的递交过程。在每个进程的task_struct中,都包含有两个变量----struct bio *bio_list, **bio_tail,generic_make_request()的主要工作就是用这两个变量来维护当前待添加的bio链表,实际的提交操作会由generic_make_request()调用__generic_make_request()函数完成。而在__generic_make_request()中,会调用到queue_list中定义的make_request_fn函数,也就是特定于设备的提交请求函数来完成后续的工作。在这里便会有一些问题,大部分设备的make_request_fn都可以直接定义为内核实现的__make_request函数,而一些设备需要使用自己的make_request_fn,而自行实现的make_request_fn有可能会递归调用gerneric_make_request(),由于内核的堆栈十分有限,因此在generic_make_request()的实现中,玩了一些小把戏,使得递归的深度不会超过一层。我们注意到bio_tail是一个二级指针,这个值最初是NULL,当有bio添加进来,bio_tail将会指向bio->bi_next(如果bio全都递交上去了,则bio_tail将会指向bio_list),也就是说除了第一次调用外,其他每次递归调用generic_make_request()函数都会出现bio_tail不为NULL的情形,因此当bio_tail不为NULL时,则只将bio添加到由bio_list和bio_tail维护的链表中,然后直接返回,而不调用__generic_make_request(),这样便防止了多重递归的产生
void generic_make_request(struct bio *bio) { if (current->bio_tail) {//current->bio_tail不为空则表明有bio正在提交,也就是说是处于递归调用 /* make_request is active */ bio->bi_next = NULL; /*这里current->tail有两种情况,当current的bio链表为空时,bio_tail指向的是bio_list 当current的bio链表不为空时,bio_tail指向的是最后一个bio的bi_next指针,因此 这句的实际作用就是将bio添加到了current的bio链表的尾部*/ *(current->bio_tail) = bio; current->bio_tail = &bio->bi_next; /*这里直接返回,遍历并且提交bio的工作永远都是交给最先调用的generic_make_request来处理的,避免了多重递归*/ return; } /* following loop may be a bit non-obvious, and so deserves some * explanation. * Before entering the loop, bio->bi_next is NULL (as all callers * ensure that) so we have a list with a single bio. * We pretend that we have just taken it off a longer list, so * we assign bio_list to the next (which is NULL) and bio_tail * to &bio_list, thus initialising the bio_list of new bios to be * added. __generic_make_request may indeed add some more bios * through a recursive call to generic_make_request. If it * did, we find a non-NULL value in bio_list and re-enter the loop * from the top. In this case we really did just take the bio * of the top of the list (no pretending) and so fixup bio_list and * bio_tail or bi_next, and call into __generic_make_request again. * * The loop was structured like this to make only one call to * __generic_make_request (which is important as it is large and * inlined) and to keep the structure simple. */ BUG_ON(bio->bi_next); do { current->bio_list = bio->bi_next;//这里取current的待提交bio链表的下一个bio if (bio->bi_next == NULL)//bi_next为空,也就是说待提交链表已经空了,只剩下最后一个bio了 current->bio_tail = ¤t->bio_list;//bio_tail指向bio_list else bio->bi_next = NULL;//否则将bio提取出来 __generic_make_request(bio);//提交bio bio = current->bio_list;//取新的待提交bio } while (bio); current->bio_tail = NULL; /* deactivate */ }
__generic_make_request()首先由bio对应的block_device获取等待队列q,然后要检查对应的设备是不是分区,如果是分区的话要将扇区地址进行重新计算,最后调用make_request_fn完成bio的递交
static inline void __generic_make_request(struct bio *bio) { struct request_queue *q; sector_t old_sector; int ret, nr_sectors = bio_sectors(bio);//提取bio的大小,以扇区为单位 dev_t old_dev; int err = -EIO; might_sleep(); //这里检查bio的传输起始扇区是否超过设备的最大扇区,并且两者之间的差不能小于nr_sector if (bio_check_eod(bio, nr_sectors)) goto end_io; /* * Resolve the mapping until finished. (drivers are * still free to implement/resolve their own stacking * by explicitly returning 0) * * NOTE: we don't repeat the blk_size check for each new device. * Stacking drivers are expected to know what they are doing. */ old_sector = -1; old_dev = 0; do { char b[BDEVNAME_SIZE]; q = bdev_get_queue(bio->bi_bdev);//获取对应设备的请求队列 if (unlikely(!q)) { printk(KERN_ERR "generic_make_request: Trying to access " "nonexistent block-device %s (%Lu)\n", bdevname(bio->bi_bdev, b), (long long) bio->bi_sector); goto end_io; } /*下面做一些必要的检查*/ if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) && nr_sectors > queue_max_hw_sectors(q))) { printk(KERN_ERR "bio too big device %s (%u > %u)\n", bdevname(bio->bi_bdev, b), bio_sectors(bio), queue_max_hw_sectors(q)); goto end_io; } if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) goto end_io; if (should_fail_request(bio)) goto end_io; /* * If this device has partitions, remap block n * of partition p to block n+start(p) of the disk. */ //如果bio指定的是一个分区,则传输点要重新进行计算 blk_partition_remap(bio); if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) goto end_io; if (old_sector != -1) trace_block_remap(q, bio, old_dev, old_sector); old_sector = bio->bi_sector; old_dev = bio->bi_bdev->bd_dev; if (bio_check_eod(bio, nr_sectors)) goto end_io; if (bio_rw_flagged(bio, BIO_RW_DISCARD) && !blk_queue_discard(q)) { err = -EOPNOTSUPP; goto end_io; } trace_block_bio_queue(q, bio); ret = q->make_request_fn(q, bio);//这里是关键,调用请求队列中的make_request_fn函数处理请求 } while (ret); return; end_io: bio_endio(bio, err); }
辅助函数blk_partition_remap():
static inline void blk_partition_remap(struct bio *bio) { struct block_device *bdev = bio->bi_bdev; /*首先要保证传输的大小不能小于1个扇区并且bdev确实是分区*/ if (bio_sectors(bio) && bdev != bdev->bd_contains) { struct hd_struct *p = bdev->bd_part;//获取分区信息 bio->bi_sector += p->start_sect;//在传输起点的原基础上加上分区的起始扇区号 bio->bi_bdev = bdev->bd_contains;//将bio的bdev置为主设备 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, bdev->bd_dev, bio->bi_sector - p->start_sect); } }
可以看到这里将bio的参考对象设置为了主设备,而不是分区,因此对应的扇区起始号也要计算为扇区的绝对值。
大多数的make_request_fn函数都可以直接定义为__make_request(),我们通过这个函数来分析递交bio的关键操作
static int __make_request(struct request_queue *q, struct bio *bio) { struct request *req; int el_ret; unsigned int bytes = bio->bi_size; const unsigned short prio = bio_prio(bio); const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG); const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK; int rw_flags; /*如果BIO_RW_BARRIER被置位(表示必须得让请求队列中的所有bio传递完毕才处理自己), 但是不支持hardbarrier,不能进行bio的提交*/ if (bio_rw_flagged(bio, BIO_RW_BARRIER) && (q->next_ordered == QUEUE_ORDERED_NONE)) { bio_endio(bio, -EOPNOTSUPP); return 0; } /* * low level driver can indicate that it wants pages above a * certain limit bounced to low memory (ie for highmem, or even * ISA dma in theory) */ blk_queue_bounce(q, &bio); spin_lock_irq(q->queue_lock); //如果BIO_RW_BARRIER被置位或者请求队列为空,则情况比较简单,不用进行bio的合并,跳转到get_rq处处理 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q)) goto get_rq; /**请求队列不为空**/ /*elv_merge()试图寻找一个已存在的request,将bio并入其中*/ el_ret = elv_merge(q, &req, bio); switch (el_ret) { case ELEVATOR_BACK_MERGE: BUG_ON(!rq_mergeable(req)); /*相关检查*/ if (!ll_back_merge_fn(q, req, bio)) break; trace_block_bio_backmerge(q, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); /*这里将bio插入到request尾部*/ req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bytes; req->ioprio = ioprio_best(req->ioprio, prio); if (!blk_rq_cpu_valid(req)) req->cpu = bio->bi_comp_cpu; drive_stat_acct(req, 0); if (!attempt_back_merge(q, req)) elv_merged_request(q, req, el_ret); goto out; case ELEVATOR_FRONT_MERGE: BUG_ON(!rq_mergeable(req)); if (!ll_front_merge_fn(q, req, bio)) break; trace_block_bio_frontmerge(q, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) { blk_rq_set_mixed_merge(req); req->cmd_flags &= ~REQ_FAILFAST_MASK; req->cmd_flags |= ff; } /*这里将bio插入到request的头部*/ bio->bi_next = req->bio; req->bio = bio; /* * may not be valid. if the low level driver said * it didn't need a bounce buffer then it better * not touch req->buffer either... */ req->buffer = bio_data(bio); req->__sector = bio->bi_sector; req->__data_len += bytes; req->ioprio = ioprio_best(req->ioprio, prio); if (!blk_rq_cpu_valid(req)) req->cpu = bio->bi_comp_cpu; drive_stat_acct(req, 0); if (!attempt_front_merge(q, req)) elv_merged_request(q, req, el_ret); goto out; /* ELV_NO_MERGE: elevator says don't/can't merge. */ default: ; } get_rq:/**下面的代码对应请求队列为空的情况,需要先分配一个request,再将bio插入***/ /* * This sync check and mask will be re-done in init_request_from_bio(), * but we need to set it earlier to expose the sync flag to the * rq allocator and io schedulers. */ rw_flags = bio_data_dir(bio);//确定读写标识 if (sync) rw_flags |= REQ_RW_SYNC; /* * Grab a free request. This is might sleep but can not fail. * Returns with the queue unlocked. */ req = get_request_wait(q, rw_flags, bio);//分配一个新的request /* * After dropping the lock and possibly sleeping here, our request * may now be mergeable after it had proven unmergeable (above). * We don't worry about that case for efficiency. It won't happen * often, and the elevators are able to handle it. */ //根据bio初始化新分配的request,并将bio插入到request中 init_request_from_bio(req, bio); spin_lock_irq(q->queue_lock); if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || bio_flagged(bio, BIO_CPU_AFFINE)) req->cpu = blk_cpu_to_group(smp_processor_id()); if (queue_should_plug(q) && elv_queue_empty(q)) blk_plug_device(q); add_request(q, req);//将request插入到请求队列 out: if (unplug || !queue_should_plug(q)) __generic_unplug_device(q); spin_unlock_irq(q->queue_lock); return 0; }
elv_merge()是执行合并的关键所在,执行完后会有三种情况:
1.bio添加到了一个request的bio链表尾部
2.bio添加到了一个request的bio链表首部
3.未能找到一个request可以添加,将重新分配一个request
int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) { struct elevator_queue *e = q->elevator; struct request *__rq; int ret; /* * First try one-hit cache. */ //last_merge指向了最近进行合并操作的request,最先试图将bio合并到该request中 if (q->last_merge) { ret = elv_try_merge(q->last_merge, bio); if (ret != ELEVATOR_NO_MERGE) { *req = q->last_merge; return ret; } } if (blk_queue_nomerges(q))//请求队列不允许合并请求,则返回NO_MERGE return ELEVATOR_NO_MERGE; /* * See if our hash lookup can find a potential backmerge. */ //根据bio的起始扇区号,通过rq的哈希表寻找一个request,可以将bio合并到request的尾部 __rq = elv_rqhash_find(q, bio->bi_sector); if (__rq && elv_rq_merge_ok(__rq, bio)) { *req = __rq; return ELEVATOR_BACK_MERGE; } /*如果以上的方法不成功,则调用特定于io调度器的elevator_merge_fn函数寻找一个合适的request*/ if (e->ops->elevator_merge_fn) return e->ops->elevator_merge_fn(q, req, bio); return ELEVATOR_NO_MERGE; }