内存池技术详解

内存池技术详解(转)
原文: http://www.yuanma.org/data/2006/1123/article_1845.htm

概述

内存池(MemPool)技术备受推崇。我用google搜索了下,没有找到比较详细的原理性的文章,故此补充一个。另外,补充了boost::pool组件与经典MemPool的差异。同时也描述了MemPool在sgi-stl/stlport中的运用。

 

经典的内存池技术

 
经典的内存池(MemPool)技术,是一种用于分配大量大小相同的小对象的技术。通过该技术可以极大加快内存分配/释放过程。下面我们详细解释其中的奥妙。
 
经典的内存池只涉及两个常量:MemBlockSize、ItemSize(小对象的大小,但不能小于指针的大小,在32位平台也就是不能小于4字节),以及两个指针变量MemBlockHeader、FreeNodeHeader。开始,这两个指针均为空。
 
class  MemPool
{
private :
    const int m_nMemBlockSize;
    
const int m_nItemSize;

     struct  _FreeNode {
        _FreeNode
*  pPrev;
        BYTE data[m_nItemSize - sizeof(_FreeNode*)];
    };

    struct _MemBlock {
        _MemBlock
* pPrev;
        _FreeNode data[m_nMemBlockSize/m_nItemSize];
    };
 
 
    _MemBlock *  m_pMemBlockHeader;
    _FreeNode
*  m_pFreeNodeHeader;
 
public :
   MemPool(
int  nItemSize,  int  nMemBlockSize  =   2048 )
       : m_nItemSize(nItemSize), m_nMemBlockSize(nMemBlockSize),
         m_pMemBlockHeader(NULL), m_pFreeNodeHeader(NULL)
   {
   }
};
 
其中指针变量MemBlockHeader是把所有申请的内存块(MemBlock)串成一个链表,以便通过它可以释放所有申请的内存。FreeNodeHeader变量则是把所有自由内存结点(FreeNode)串成一个链。
 
这段话涉及两个关键概念: 内存块(MemBlock)自由内存结点(FreeNode)。内存块大小一般固定为MemBlockSize字节(除去用以建立链表的指针外)。内存块在申请之初就被划分为多个内存结点(Node),每个Node大小为ItemSize(小对象的大小),计MemBlockSize/ItemSize个。这MemBlockSize/ItemSize个内存结点刚开始全部是自由的,他们被串成链表。我们看看申请/释放内存过程,就很容易明白这样做的目的。
 

申请内存过程

代码如下:
void *  MemPool::malloc()     //  没有参数
{
    
if  (m_pFreeNodeHeader  ==  NULL)
    {
       
const   int  nCount  =  m_nMemBlockSize / m_nItemSize;
        _MemBlock
*  pNewBlock  =   new _MemBlock ;
        pNewBlock->data[ 0 ].pPrev  =  NULL;
        
for  ( int  i  =   1 ; i  <  nCount;  ++ i)
            pNewBlock->data[i].pPrev 
=   & pNewBlock->data[i - 1 ];
        m_pFreeNodeHeader 
=   & pNewBlock->data[nCount - 1 ];
        pNewBlock
-> pPrev  =  m_pMemBlock;
        m_pMemBlock 
=  pNewBlock;
    }
    
void *  pFreeNode  =  m_pFreeNodeHeader;
    m_pFreeNodeHeader 
=  m_pFreeNodeHeader -> pPrev;
    
return  pFreeNode;
}
 
内存申请过程分为两种情况:
  • 在自由内存结点链表(FreeNodeList)非空。
    在此情况下,Alloc过程只是从链表中摘下一个结点的过程。
     
  • 否则,意味着需要一个新的内存块(MemBlock)。
    这个过程需要将新申请的MemBlock切割成多个Node,并把它们串起来。
    MemPool技术的开销主要在这。
     

释放内存过程

 代码如下:
void  MemPool::free( void *  p)
{
    _FreeNode
*  pNode  =  (_FreeNode * )p;
    pNode
-> pPrev  =  m_pFreeNodeHeader;
    m_pFreeNodeHeader 
=  pNode;
}
 
释放过程极其简单,只是把要释放的结点挂到自由内存链表(FreeNodeList)的开头即可。
 

性能分析

MemPool技术申请内存/释放内存均极其快(比 AutoFreeAlloc慢)。其内存分配过程多数情况下复杂度为O(1),主要开销在FreeNodeList为空需要生成新的MemBlock时。内存释放过程复杂度为O(1)。

 

boost::pool

boost::pool是内存池技术的变种。主要的变化如下:

  • MemBlock改为非固定长度(MemBlockSize),而是:第1次申请时m_nItemSize*32,第2次申请时m_nItemSize*64,第3次申请时m_nItemSize*128,以此类推。不采用固定的MemBlockSize,而采用这种做法预测模型(是的,这是一种用户内存需求的预测模型,其实std::vector的内存增长亦采用了该模型),是一个细节上的改良。
     
  • 增加了ordered_free(void* p) 函数。

    ordered_free区别于free的是,free把要释放的结点挂到自由内存链表(FreeNodeList)的开头,ordered_free则假设FreeNodeList是有序的,因此会遍历FreeNodeList把要释放的结点插入到合适的位置。

    我们已经看到,free的复杂度是O(1),非常快。但请注意ordered_free是比较费的操作,其复杂度是O(N)。这里N是FreeNodeList的大小。对于一个频繁释放/申请的系统,这个N很可能是个大数。这个boost描述得很清楚:http://www.boost.org/libs/pool/doc/interfaces/pool.html

注意:不要认为boost提供ordered_free是多此一举。后文我们会在讨论boost::object_pool时解释这一点。

 

基于内存池技术的通用内存分配组件 


sgi-stl把内存池(MemPool)技术进行发扬光大,用它来实现其最根本的allocator。
 
其大体的思想是,建立32个MemPool,<=4字节的内存申请由0号MemPool分配,<=8字节的内存申请由1号MemPool分配,以此类推。最后,>128字节的内存申请由普通的malloc分配。
 
 

注意


以上代码属于伪代码(struct _FreeNode、_MemBlock编译通不过),并且去除了出错处理。

 

你可能感兴趣的:(内存池技术详解)