贪心算法

贪心算法的设计思想

         贪心算法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。贪心算法对于大部分的优化问题都能产生最优解,但不能总获得整体最优解,通常可以获得近似最优解。

引例 [找零钱]

一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目

引例分析

为使找回的零钱的硬币数最小,不考虑找零钱的所有各种方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,只当不足大面值币种的金额才会去考虑下一种较小面值的币种。这就是在采用贪婪法。这种方法在这里之所以总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如果只有面值分别为1,5和11单位的硬币,而希望找回总额为15单位的硬币,按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解答应是3个5单位面值的硬币。

贪心法的求解过程 

           用贪心法求解问题应该考虑如下几个方面:
(1)候选集合C:为了构造问题的解决方案,有一个候选集合C作为问题的可能解,即问题的最终解均取自于候选集合C。例如,在付款问题中,各种            面值的货币构成候选集合。
(2)解集合S:随着贪心选择的进行,解集合S不断扩展,直到构成一个满足问题的完整解。例如,在付款问题中,已付出的货币构成解集合。
(3)解决函数solution:检查解集合S是否构成问题的完整解。例如,在付款问题中,解决函数是已付出的货币金额恰好等于应付款。
(4)选择函数select:即贪心策略,这是贪心法的关键,它指出哪个候选对象最有希望构成问题的解,选择函数通常和目标函数有关。例如,在付款             问题中,贪心策略就是在候选集合中选择面值最大的货币。
(5)可行函数feasible:检查解集合中加入一个候选对象是否可行,即解集合扩展后是否满足约束条件。例如,在付款问题中,可行函数是每一步选              择的货币和已付出的货币相加不超过应付款。

贪心法的一般流程

Greedy(C)  //C是问题的输入集合即候选集合
{
    S={ };  //初始解集合为空集
    while (not solution(S))  //集合S没有构成问题的一个解
    {
       x=select(C);    //在候选集合C中做贪心选择
       if feasible(S, x)  //判断集合S中加入x后的解是否可行
          S=S+{x};
          C=C-{x};
    }
   return S;

贪心法的基本要素

      对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。
      但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质: 贪心选择性质最优子结构性质
子问题:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,对于任何一个整数k,1 < k < n,以Dk作为问题的初始状态,来进行以后的决策,这样的问题就成为是原问题的一个子问题。

1.贪心选择性质

      所谓 贪心选择性质是指所求问题的 整体最优解可以通过一系列 局部最优的选择,换句话说,当考虑做何种选择的时候,我们只考虑对当前问题最佳的选择而不考虑子问题的结果。这是贪心算法可行的第一个基本要素。
贪心算法以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
      对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。

2.最优子结构性质

       当一个问题的最优解包含其子问题的最优解时,称此问题具有 最优子结构性质。问题的最优子结构性质是该问题可用贪心算法求解的关键特征。

贪心法的应用

  • 哈夫曼编码
  • 0-1背包问题
  • 磁盘文件的存储
  • 生产调度问题
  • 信息查询


你可能感兴趣的:(c,优化,算法,存储,扩展,磁盘)